A strategy for radar derived rain rate assimilation in regional scale models: 1Dvar versus latent heat nudging

F. Di Giuseppe and V. Poli

Servizio IdroMeteoClima, Bologna, IT

COSMO, Moscow 2010

thanks to: Philippe Lopez (ECMWF), Anna Fornasiero and PierPaolo Alberoni (ARPA-SIMC), Christoph Schraff (DWD)
What can we expect from Radar RR assimilation?

Maps of mean precipitation accumulations (1 month) from USA radar network (NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF forecast with RR assimilation minus CTRL. The mean error in the model precipitation is not greatly modified by the additional NEXRAD observations, except for a further reduction of rainfall over SE as US for the 06 h range.

Other findings were that USA have a lot of in-situ humidity observations when these are actually removed from the assimilation the impact of radar observation is highly strengthened, therefore the use of radar data can be more important in areas less covered by observations.

What can we expect from Radar RR assimilation?

Maps of mean precipitation accumulations (1 month) from USA radar network (NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF forecast with RR assimilation minus CTRL. The mean error in the model precipitation is not greatly modified by the additional NEXRAD observations, except for a further reduction of rainfall over SEasUS for the 06 h range Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.
What can we expect from Radar RR assimilation?

Maps of mean precipitation accumulations (1 month) from USA radar network (NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF forecast with RR assimilation minus CTRL. The mean error in the model precipitation is not greatly modified by the additional NEXRAD observations, except for a further reduction of rainfall over SEasUS for the 06 h range. Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.

Other findings were that
What can we expect from Radar RR assimilation?

Maps of mean precipitation accumulations (1 month) from USA radar network (NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF forecast with RR assimilation minus CTRL. **The mean error in the model precipitation is not greatly modified by the additional NEXRAD observations, except for a further reduction of rainfall over SEasUS for the 06 h range** Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.

Other findings were that

- USA have a lot of in-situ humidity observations
What can we expect from Radar RR assimilation?

Maps of mean precipitation accumulations (1 month) from USA radar network (NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF forecast with RR assimilation minus CTRL. The mean error in the model precipitation is not greatly modified by the additional NEXRAD observations, except for a further reduction of rainfall over SEasUS for the 06 h range. Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.

Other findings were that:
- USA have a lot of in-situ humidity observations
- when these are actually removed from the assimilation the impact of radar observation is highly strengthened
Maps of mean precipitation accumulations (1 month) from USA radar network (NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF forecast with RR assimilation minus CTRL. The mean error in the model precipitation is not greatly modified by the additional NEXRAD observations, except for a further reduction of rainfall over SEasUS for the 06 h range. Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.

Other findings were that:
- USA have a lot of in-situ humidity observations
- when these are actually removed from the assimilation the impact of radar observation is highly strengthened
- therefore the use of radar data can be more important in areas less covered by observations

COSMO RR assimilation

Impact of latent heat nudging for 60 days against radar observations. (COSMO-DE)

from Stephan K, Klink S, Schraff C. 2008. QJRMS
“Italian” Motivation

The Italian radar network is planned to become fully operational in 2011. The successful use of radar derived products, and in primis of the derived rain rate, is clearly desirable not only for monitoring purposes but also for the substantial data enrichment of high resolution assimilation systems based on rapid update cycles.

Description of methods
- LHN
- 1DVAR
- Differences

Validation Period
- Radar data – RR derivation
- Radar data – Data thinning
- Synoptic regime

Results
- Temperature and humidity fields
- Cumulative Precipitation
- Intensity-spatial scale verification
- Surface variables

Conclusions
- Conclusions
“Italian” Motivation

The Italian radar network is planned to become fully operational in 2011. The successful use of radar derived products, and in primis of the derived rain rate, is clearly desirable not only for monitoring purposes but also for the substantial data enrichment of high resolution assimilation systems based on rapid update cycles.

Description of methods
- LHN
- 1DVAR
- Differences

Validation Period
- Radar data – RR derivation
- Radar data – Data thinning
- Synoptic regime

Results
- Temperature and humidity fields
- Cumulative Precipitation
- Intensity-spatial scale verification
- Surface variables

Conclusions
- Conclusions
Latent Heat nudging

Assumption: The precipitation rate in a column is proportional to the latent heat release. If there are differences between modelled rain rates, \(RR_b \), and the observed ones \(RR_{obs} \), the scheme adds a latent heat term to the equation describing the temperature tendency.

Implementation:
The LHN temperature increment, \(\Delta T_{LHN} \), is performed by scaling the background temperature vertical profile with the ratio of analysed to modeled precipitation rate according to equation:

\[
\Delta T_{LHN} = \left(\frac{RR_{ana}}{RR_b} - 1 \right) \Delta T_{LHmodel}
\]

(1)

where the analysed precipitation rate is a weighted mean of observed and modeled precipitation rate \((RR_{ana} = \beta \cdot RR_{obs} + (1- \beta) \cdot RR_b) \).
Latent Heat nudging

Assumption: The precipitation rate in a column is proportional to the latent heat release. If there are differences between modelled rain rates, RR_b, and the observed ones RR_{obs}, the scheme adds a latent heat term to the equation describing the temperature tendency.

Implementation:
The LHN temperature increment, ΔT_{LHN}, is performed by scaling the background temperature vertical profile with the ratio of analysed to modeled precipitation rate according to equation:

$$
\Delta T_{LHN} = \left(\frac{RR_{ana}}{RR_b} - 1 \right) \Delta T_{LHmodel}
$$

(1)

where the analysed precipitation rate is a weighted mean of observed and modeled precipitation rate ($RR_{ana} = \beta \cdot RR_{obs} + (1-\beta) \cdot RR_b$).
Assumption: The precipitation rate in a column is a “solution” of the large-scale and convection cloud schemes. If there are differences between modelled rain rates, RR_b, and observed ones RR_{obs}, a simplified linearised scheme searches the best increments in the temperature and humidity profiles which minimise the RR differences taking into account the estimated error in the model and observations.

Implementation:
The 1DVAR temperature and humidity increments, ΔT_{1DVAR}, ΔQ_{1DVAR}, are solutions of:

$$J(x) = \frac{1}{2}(x - x_b)^TB^{-1}(x - x_b) + \frac{1}{2}(H(x) - RR_{obs})^TR^{-1}(H(x) - RR_{obs})$$

where H is the operator simulating the observed data from the model variable x, R is the observation error matrix which includes measurement errors and representativeness errors, including errors in H, and B is the background error covariance matrix of the state x_b. The superscripts -1 and T denote inverse and transpose matrices, respectively.
Assumption: The precipitation rate in a column is a “solution” of the large-scale and convection cloud schemes. If there are differences between modelled rain rates, RR_b, and observed ones RR_{obs}, a simplified linearised scheme searches the best increments in the temperature and humidity profiles which minimise the RR differences taking into account the estimated error in the model and observations.

Implementation:

The 1DVAR temperature and humidity increments, ΔT_{1DVAR}, ΔQ_{1DVAR} are solutions of:

$$J(x) = \frac{1}{2}(x - x_b)^T B^{-1} (x - x_b) +$$
$$+ \frac{1}{2} (H(x) - \text{RR}_{obs})^T R^{-1} (H(x) - \text{RR}_{obs})$$ \(2\)

where H is the operator simulating the observed data from the model variable x, R is the observation error matrix which includes measurement errors and representativeness errors, including errors in H, and B is the background error covariance matrix of the state x_b. The superscripts -1 and T denote inverse and transpose matrices, respectively.
Method Differences

In both cases the observation is at the ground. The LHN uses the differences in RR to rescale the whole temperature profile. The 1DVAR instead propagates “vertically “ the differences using a linearised cloud model. The 1DVAR retains information on the model and observation errors through the B and R matrices.
When they work ok and ... when they don’t!

- \(\text{RR}_{\text{obs}} = 0 \) and \(\text{RR}_b = 0 \): No winner, No looser!
- \(\text{RR}_{\text{obs}} > 0 \) and \(\text{RR}_b = 0 \)
 - **LHN** \(\Delta T_{\text{LHmodel}} = 0 \): there can’t be an increment (the algorithm applies a grid-point search for a suitable \(\Delta T_{\text{LHmodel}} \) profile)
 - **1DVar** The cloud operator \(H(x_b) = 0 \) therefore
 \[
 J(x) = \frac{1}{2} (-y)^T R^{-1} (-y)
 \]
 which does not depend anymore on the temperature and humidity profiles. The increments are null.
- \(\text{RR}_{\text{obs}} = 0 \) and \(\text{RR}_b > 0 \)
 - **LHN** \(RR_{\text{ana}} = \beta \cdot RR_{\text{obs}} + (1- \beta \cdot RR_b = 0 \): the decrement is set to a fixed amount.
 - **1DVar** No problems! works very efficiently
- \(\text{RR}_{\text{obs}} > 0 \) and \(\text{RR}_b > 0 \): Each method plays its game!
When they work ok and ... when they don’t!

- **$RR_{obs} = 0$ and $RR_b = 0$** No winner, No looser!
- **$RR_{obs} > 0$ and $RR_b = 0$**
 - **LHN** $\Delta T_{LHmodel} = 0$ there can’t be an increment (the algorithm applies a grid-point search for a suitable $\Delta T_{LHmodel}$ profile)
 - **1DVar** The cloud operator $H(xb) = 0$ therefore
 \[J(x) = \frac{1}{2}(-y)^T R^{-1}(-y) \]
 which does not depend anymore on the temperature and humidity profiles. The increments are null.

- **$RR_{obs} = 0$ and $RR_b > 0$**
 - **LHN** $RR_{ana} = \beta \cdot RR_{obs} + (1 - \beta) \cdot RR_b = 0$!! the decrement is set to a fixed amount.
 - **1DVar** No problems! works very efficiently

- **$RR_{obs} > 0$ and $RR_b > 0$** Each method plays its game!
When they work ok and ... when they don’t!

| RR\textsubscript{obs} = 0 and RR\textsubscript{b} = 0 | No winner, No looser! |
| RR\textsubscript{obs} > 0 and RR\textsubscript{b} = 0 |

- **LHN** \(\Delta T\text{\textsubscript{LHmodel}} = 0 \) there can’t be an increment (the algorithm applies a grid-point search for a suitable \(\Delta T\text{\textsubscript{LHmodel}} \) profile)
- **1DVar** The cloud operator \(H(x_b) = 0 \) therefore \(J(x) = \frac{1}{2}(-y)^T R^{-1}(-y) \) which does not depend anymore on the temperature and humidity profiles. The increments are null.

- **RR\textsubscript{obs} = 0 and RR\textsubscript{b} > 0**
- **LHN** \(RR\text{\textsubscript{ana}} = \beta \cdot RR\text{\textsubscript{obs}} + (1 - \beta) \cdot RR\text{\textsubscript{b}} = 0 \) !! the decrement is set to a fixed amount.
- **1DVar** No problems! works very efficiently

- **RR\textsubscript{obs} > 0 and RR\textsubscript{b} > 0** Each method plays its game!
When they work ok and ... when they don’t!

- \(RR_{obs} = 0 \) and \(RR_b = 0 \) No winner, No looser!
- \(RR_{obs} > 0 \) and \(RR_b = 0 \)
 - **LHN** \(\Delta T_{LHmodel} = 0 \) there can’t be an increment (the algorithm applies a grid-point search for a suitable \(\Delta T_{LHmodel} \) profile)
 - **1DVar** The cloud operator \(H(xb) = 0 \) therefore
 \[
 J(x) = \frac{1}{2}(-y)^T R^{-1}(-y)
 \]
 which does not depend anymore on the temperature and humidity profiles. The increments are null.
- \(RR_{obs} = 0 \) and \(RR_b > 0 \)
 - **LHN** \(RR_{ana} = \beta \cdot RR_{obs} + (1-\beta) \cdot RR_b = 0 \) !! the de-crement is set to a fixed amount.
 - **1DVar** No problems! works very efficiently
- \(RR_{obs} > 0 \) and \(RR_b > 0 \) Each method plays its game!
Description of methods

Validation Period

Results

Conclusions

When they work ok and ... when they don’t!

<table>
<thead>
<tr>
<th>RR${obs}$ = 0 and RR${b}$ = 0</th>
<th>No winner, No looser!</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR${obs}$ > 0 and RR${b}$ = 0</td>
<td>LHN Δ$T_{LHmodel}$ = 0 there can’t be an increment (the algorithm applies a grid-point search for a suitable Δ$T_{LHmodel}$ profile)</td>
</tr>
<tr>
<td>1DVar</td>
<td>The cloud operator H(xb) = 0 therefore</td>
</tr>
<tr>
<td></td>
<td>J(x) = $\frac{1}{2}(-y)^T R^{-1}(-y)$ which does not depend anymore on the temperature and humidity profiles. The increments are null.</td>
</tr>
<tr>
<td>RR${obs}$ = 0 and RR${b}$ > 0</td>
<td>LHN RR${ana} = \beta \cdot$ RR${obs}$ + (1 - β) \cdot RR$_{b}$ = 0 !! the decrement is set to a fixed amount.</td>
</tr>
<tr>
<td>1DVar</td>
<td>No problems! works very efficiently</td>
</tr>
<tr>
<td>RR${obs}$ > 0 and RR${b}$ > 0</td>
<td>Each method plays its game!</td>
</tr>
</tbody>
</table>
When they work ok and ... when they don’t!

- \(RR_{\text{obs}} = 0 \) and \(RR_{b} = 0 \) No winner, No looser!
- \(RR_{\text{obs}} > 0 \) and \(RR_{b} = 0 \)
 - **LHN** \(\Delta T_{\text{LHmodel}} = 0 \) there can’t be an increment (the algorithm applies a grid-point search for a suitable \(\Delta T_{\text{LHmodel}} \) profile)
 - **1DVar** The cloud operator \(H(x_{b}) = 0 \) therefore
 \[
 J(x) = \frac{1}{2}(-y)^{T}R^{-1}(-y)
 \]
 which does not depend anymore on the temperature and humidity profiles. The increments are null.

- \(RR_{\text{obs}} = 0 \) and \(RR_{b} > 0 \)
 - **LHN** \(RR_{\text{ana}} = \beta \cdot RR_{\text{obs}} + (1- \beta) \cdot RR_{b} = 0 \) !! the decrement is set to a fixed amount.
 - **1DVar** No problems! works very efficiently

- \(RR_{\text{obs}} > 0 \) and \(RR_{b} > 0 \) Each method plays its game!
When they work ok and ... when they don’t!

<table>
<thead>
<tr>
<th>RR<sub>obs</sub> = 0 and RR<sub>b</sub> = 0</th>
<th>No winner, No looser!</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR<sub>obs</sub> > 0 and RR<sub>b</sub> = 0</td>
<td></td>
</tr>
<tr>
<td>LHN</td>
<td>(\Delta T_{LHmodel} = 0) there can’t be an increment (the algorithm applies a grid-point search for a suitable (\Delta T_{LHmodel}) profile)</td>
</tr>
<tr>
<td>1DVar</td>
<td>The cloud operator (H(x_b) = 0) therefore</td>
</tr>
<tr>
<td>(J(x) = \frac{1}{2} (-y)^T R^{-1} (-y))</td>
<td>which does not depend anymore on the temperature and humidity profiles. The increments are null.</td>
</tr>
<tr>
<td>RR<sub>obs</sub> = 0 and RR<sub>b</sub> > 0</td>
<td></td>
</tr>
<tr>
<td>LHN</td>
<td>(RR_{ana} = \beta \cdot RR_{obs} + (1 - \beta) \cdot RR_b = 0) !! the decrement is setto a fixed amount.</td>
</tr>
<tr>
<td>1DVar</td>
<td>No problems! works very efficiently</td>
</tr>
<tr>
<td>RR<sub>obs</sub> > 0 and RR<sub>b</sub> > 0</td>
<td>Each method plays its game!</td>
</tr>
</tbody>
</table>
When they work ok and ... when they don’t!

- $RR_{obs} = 0$ and $RR_b = 0$ No winner, No looser!
- $RR_{obs} > 0$ and $RR_b = 0$
 - LHN $\Delta T_{LHmodel} = 0$ there can’t be an increment (the algorithm applies a grid-point search for a suitable $\Delta T_{LHmodel}$ profile)
- 1DVar The cloud operator $H(xb) = 0$ therefore
 \[
 J(x) = \frac{1}{2}(-y)^T R^{-1} (-y)
 \]
 which does not depend anymore on the temperature and humidity profiles. The increments are null.
- $RR_{obs} = 0$ and $RR_b > 0$
 - LHN $RR_{ana} = \beta \cdot RR_{obs} + (1-\beta) \cdot RR_b = 0$!! the decrement is set to a fixed amount.
- 1DVar No problems! works very efficiently
- $RR_{obs} > 0$ and $RR_b > 0$ Each method plays its game!
When they work ok and ... when they don’t!

- \(RR_{\text{obs}} = 0 \) and \(RR_b = 0 \) No winner, No looser!
- \(RR_{\text{obs}} > 0 \) and \(RR_b = 0 \)
 - \(\text{LHN} \quad \Delta T_{\text{LHmodel}} = 0 \) there can’t be an increment (the algorithm applies a grid-point search for a suitable \(\Delta T_{\text{LHmodel}} \) profile)
 - \(\text{1DVar} \quad \text{The cloud operator } H(xb) = 0 \) therefore
 \[
 J(x) = \frac{1}{2}(-y)^T R^{-1}(-y)
 \]
 which does not depend anymore on the temperature and humidity profiles. The increments are null.
- \(RR_{\text{obs}} = 0 \) and \(RR_b > 0 \)
 - \(\text{LHN} \quad RR_{\text{ana}} = \beta \cdot RR_{\text{obs}} + (1 - \beta) \cdot RR_b = 0 \) !! the decrement is set to a fixed amount.
 - \(\text{1DVar} \quad \text{No problems! works very efficiently} \)
- \(RR_{\text{obs}} > 0 \) and \(RR_b > 0 \) Each method plays its game!
Radar data – RR derivation

- Reflectivity converted in RR using Marshall-Palmer
 \[Z = a R^b \]
 with \(a = 400 \) and \(b = 1.5 \)

- Error on \(RR_{obs} \) needed to calculate the \(R \) matrix following:
 \[\epsilon = (1 - Q) + 0.2 \left(\frac{\sigma}{\sigma_{max}} \right) Q \]

Figure: Integration domains for COSMO used in this study. The circles represent the spatial range (data coverage) of the two polarimetric radars used.
Radar data – RR derivation

- Reflectivity converted in RR using Marshall-Palmer formula:
 \[Z = a \, R^b \]
 with \(a = 400 \) and \(b = 1.5 \)
- Error on RR_{obs} needed to calculate the \(\mathbf{R} \) matrix following:
 \[\epsilon = (1 - Q) + 0.2 \left(\frac{\sigma}{\sigma_{\text{max}}} \right) Q \]
 where:
 - \(Q \) is a number in the range \([0;1]\); quality parameter
 - \(\sigma \) sub-grid scale orography from a high resolution (~90 m) DEM
Radar data – Data thinning

<table>
<thead>
<tr>
<th>Description of methods</th>
<th>Validation Period</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

High density observations with correlated errors can produce a degradation of the analysis because of the potential spreading of error in correlated neighbouring pixels.

- **temporal data thinning** is simply performed by selecting data at a specific interval of 15 minutes.
- the spatial sampling is determined by the decorrelation length of the reflectivity auto–correlation field.

Figure: Auto-correlation field as a function of distance for the reflectivity fields. Two possible fitting functions are displayed from which the e-folding distance is calculated; an exponential function $f(x) = a_0 e^{a_1 x}$ with least-square best fit parameters $a_0 = 0.87$ and $a_1 = -0.03$; and a non-linear function combination of a Gaussian and a quadratic function $f(x) = A_0 e^{-\frac{(x-x_0)^2}{\sigma^2}} + A_3 + A_4 x + A_5 x^2$, with parameters $A_0=1.61$, $A_1=-33.18$, $A_2=18.56$, $A_3=0.68$, $A_4=-0.01$ and $A_5=5.6 \times 10^{-5}$. Small embedded picture: the derivative of the auto-correlation field.
Sequence of the +24h forecast cumulative precipitation (mm/day) for the two assimilation experiments (LHN, 1DVAR) the control (N-RAD) and has observed by the CMORPH dataset. Very heavy precipitation were predicted over the Eastern part of the Alps by the COSMO model in its operational configuration. The 4th and the 12th of June the prediction of severe thunderstorm caused the issued of two early warnings for heavy rains and consequent hydro-geological damage for those regions. The events were instead of minor intensity and afterwards classified as false-alarm cases by the civil protection authority.
Zonal mean temperature and humidity fields. Analysis +6hrs,+12 hrs forecast fields are considered for a 18 day period starting from the 1st of June 2008. The zonal mean orography is reported on the bottom part of the figure. Important to notice is the change in the humidity field introduced by the 1DVAR.
3 hourly cumulative mean precipitation during the first 24-hour assimilation window and the first +24hr forecast range. Only points with RR > 5 mm/day are used.
Intensity-spatial scale RR verification

Heidke mean skill score as a function of the spatial scale of aggregation and the accumulation rain rate for the +24-h forecast.

\[
HHS = \frac{(\text{hits} + \text{correct negative}) - (\text{expected correct})_{\text{persistence}}}{\text{total event} - (\text{expected correct})_{\text{persistence}}} \tag{3}
\]

This score measures the fraction of correct forecasts after eliminating those forecasts which would be correct due purely to the random chance, here considered equivalent to the persistence (i.e. no change from previous forecast).
Bias and RMSE relative to the 2m dry and wet temperatures obtained for the 17 days considered, at 00 UTC (ANALYSIS) and at 12 UTC (+12 hr forecast). Last panel: total number of synop stations used in the comparison.
For the 18 days of June 2008 taken as test period, the impact of RR assimilation is found beneficial for the forecast of RR amount in the first few hours of free forecast when using any of the two techniques.

Nevertheless, the 1Dvar showed to outperform the LHN in the capability to sustain in time the induced modification to the precipitation field.

The larger benefit in the forecast scores produced by the 1Dvar is mainly due to the capability of this method to provide to the nudging scheme vertical increments of temperature and humidity which are solution of a cloud scheme and therefore more dynamically consistent with the induced precipitation change.

Intensity-scale verification showed that most of the benefit arising from the assimilation of radar derived rain rate is due to the improvement in the prediction of precipitation amount while the impact in the precipitation localization is of minor importance.
Conclusions

1. For the 18 days of June 2008 taken as test period, the impact of RR assimilation is found beneficial for the forecast of RR amount in the first few hours of free forecast when using any of the two techniques.

2. Nevertheless, the 1Dvar showed to outperform the LHN in the capability to sustain in time the induced modification to the precipitation field.

3. The larger benefit in the forecast scores produced by the 1Dvar is mainly due to the capability of this method to provide to the nudging scheme vertical increments of temperature and humidity which are solution of a cloud scheme and therefore more dynamically consistent with the induced precipitation change.

4. Intensity-scale verification showed that most of the benefit arising from the assimilation of radar derived rain rate is due to the improvement in the prediction of precipitation amount while the impact in the precipitation localization is of minor importance.
Conclusions

1. For the 18 days of June 2008 taken as test period, the impact of RR assimilation is found beneficial for the forecast of RR amount in the first few hours of free forecast when using any of the two techniques.

2. Nevertheless, the 1Dvar showed to outperform the LHN in the capability to sustain in time the induced modification to the precipitation field.

3. The larger benefit in the forecast scores produced by the 1Dvar is mainly due to the capability of this method to provide to the nudging scheme vertical increments of temperature and humidity which are solution of a cloud scheme and therefore more dynamically consistent with the induced precipitation change.

4. Intensity-scale verification showed that most of the benefit arising from the assimilation of radar derived rain rate is due to the improvement in the prediction of precipitation amount while the impact in the precipitation localization is of minor importance.
For the 18 days of June 2008 taken as test period, the impact of RR assimilation is found beneficial for the forecast of RR amount in the first few hours of free forecast when using any of the two techniques.

Nevertheless, the 1Dvar showed to outperform the LHN in the capability to sustain in time the induced modification to the precipitation field.

The larger benefit in the forecast scores produced by the 1Dvar is mainly due to the capability of this method to provide to the nudging scheme vertical increments of temperature and humidity which are solution of a cloud scheme and therefore more dynamically consistent with the induced precipitation change.

Intensity-scale verification showed that most of the benefit arising from the assimilation of radar derived rain rate is due to the improvement in the prediction of precipitation amount while the impact in the precipitation localization is of minor importance.
One last thing
One last thing

До свидания через два года..
One last thing

Do svidaniya ceres dva goda..
One last thing

До свидания через два года..

?
See you in two years time...