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What can we expect from Radar RR assimilation?
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Other findings were that
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observations, except for a further reduction of rainfall over SEasUS for
the 06 h range Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.




What can we expect from Radar RR assimilation?

Evening .6 Night 12.18

Other findings were that

@ USA have a lot of in-situ humidity
obserations

@ when these are actually removed from
the assimilation the impact of radar
observation is highly strenghtned

@ therefore the use of radar data can be
more important in areas less covered
by observations

Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.
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Maps of mean precipitation accumulations (1 month) from USA radar network
(NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF
forecast with RR assimilation minus CTRL. The mean error in the model

pr ion is not greatly modified by the additional NEXRAD
observations, except for a further reduction of rainfall over SEasUS for
the 06 h range Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.
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Outline

“ltalian”Motivation

The Italian radar network is planned to become fully operational in 2011.
The successful use of radar derived products, and in primis of the derived
rain rate, is clearly desirable not only for monitoring purposes but also for the
substantial data enrichment of high resolution assimilation systems based on
rapid update cycles
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release. If there are differences between modelled rain rates, RRj, and the observed

ones RRyps, the scheme adds a latent heat term to the equation describing the
temperature tendency.
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Latent Heat nudging

Assumption: The precipitation rate in a column is proportional to the latent heat
release. If there are differences between modelled rain rates, RRy, and the observed
ones RR,s, the scheme adds a latent heat term to the equation describing the
temperature tendency.

Implementation:

The LHN temperature increment, AT, yn, is performed by scaling the background
temperature vertical profile with the ratio of analysed to modeled precipitation rate
according to equation:

RR
ATipn = (ﬁ - 1) AT Hmodel (1)

where the analysed precipitation rate is a weighted mean of observed and modeled
precipitation rate (RRzna= 8- RRops+(1- 3) - RRp).
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Assumption: . The precipitation rate in a column is a “solution” of the large-scale and
convection cloud schemes. If there are differences between modelled rain rates,RRp,
and observed ones RRs, a simplified linearised scheme search the best increments

in the temperature and humidity profiles which minimise the RR differences taking into
account the estimated error in the model and observations
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1DVAR

Assumption: . The precipitation rate in a column is a “solution” of the large-scale and

convection cloud schemes. If there are differences between modelled rain rates,RRy,
and observed ones RRs, a simplified linearised scheme search the best increments
in the temperature and humidity profiles which minimise the RR differences taking into
account the estimated error in the model and observations

Implementation:

The 1DVAR temperature and humidity increments, A T1pyar, AQqpyar are solutions of:

J(X) = 5(x = xp)TB~T (X — Xp)+ @)
+3(H(x) — RRops) "R~" (H(x) — RRops)
where H is the operator simulating the observed data from the model variable x, R is
the observation error matrix which includes measurement errors and
representativeness errors, including errors in H, and B is the background error
covariance matrix of the state x,. The superscripts —1 and T denote inverse and
transpose matrices, respectively



Method Differences
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In both cases the observation is at the ground. The LHN uses the differences
in RR to rescale the whole temperature profile. The 1DVAR instead
propagates “vertically “ the differences using a linearised cloud model.

The 1DVAR retains information on the model and observation errors through
the B and R matrices.
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@ RRgps = 0 and RR, = 0 No winner, No looser!
@ RRgps >0and RR, =0

=0

LHN AT, 4moder = 0 there can’t be an increment (the
algorithm applies a grid-point search for a suitable
AT} Hmoder profile)

RRo

1DVar The cloud operator H(xb )=0 therefore

>0

J) = S(9)R ()

which does not depend anymore on the temperature
and humidity profiles. The increments are null.
@ RRos =0and RRy, > 0

LHN RRana= 8- RRgps+(1- 8) - RRp = 0 !l the de-cremen
is setto aa fixed ammount.
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@ RRos = 0 and RR, = 0 No winner, No looser!
@ RRgps >0and RR, =0
LHN AT, 4moder = 0 there can’t be an increment (the
algorithm applies a grid-point search for a suitable

AT, Hmoder profile)
1DVar The cloud operator H(xb )=0 therefore

1 _
J(x) = E(fV)TR '(-y)

which does not depend anymore on the temperature
and humidity profiles. The increments are null.

@ RRypps = 0and RR, >0

LHN RRana= 8- RRgpst+(1- 8) - RRp = 0 !l the de-cremen

is setto aa fixed ammount.

1DVar No problems! works very efficiently

@ RRgps > 0 and RR, > 0 Each method plays its
game !
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@ Reflectivity converted in RR using Marshall-Palmer
' Z=aR®

44N - --

42°N —

witha=400and b=1.5

@ Error on RRps needed to calculate the R matrix
following:

40°N —
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c—(1-0)+02 <L> Q

O max
Figure: Integration domains for where:

COSMO used in this study. The circles o Qis a number in the range [0;1]; quality parameter

represent the spatial range (data o o sub-grid scale orography from a high
coverage) of the two polarimetric radars resolution (~90 m) DEM

used.
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1.0 T
0.8
5 06- Ry High density observations with correlated errors can
E produce a degradation of the analysis because of the
S 04 ) potential spreading of error in correlated neighbouring
pixels
o2 @ temporal data thinning is simply performed by
N selecting data at a specific interval of 15 minutes
0 B et 80 @ the spatial sampling is determined by the
) decorrelation length of the reflectivity
Flgure: Auto-correlation field as a function of distance for the auto_correlatlon f|e|d

reflectivity fields. Two possible fitting function are displayed from which the
e-folding distance is calculated; an exponential function f(x) = a,e™” with
least-square best fit parameters a, = 0.87 and a, = —0.03;and a
non-linear function combination of a Gaussian and a quadratic function

— 2

f(x) = Ae %+ Ay + Agx + Agx®, with parameters Ay=1.61,

A,=-33.18, A,=18.56, A;=0.68, A,=-0.01 and A;=5.6 10 °. Small embedded
picture: the derivative of the auto-correlation field.

DA

u]

o)
I
ul

it



Synoptic Regime

+24 hr forecasted daily precipitation 2-17 June 2008

1 5 7 10 15 20 25 30 50 75 100

Sequence of the +24h forecast cumulative precipitation (mm/day)for the two
assimilation experiments (LHN,1DVAR) the control (N-RAD) and has observed by the
CMORPH dataset. Very heavy precipitation were predicted over the Eastern part of the
Alps by the COSMO model in its operational configuration. The 4th and the 12th of
June the prediction of severe thunderstorm caused the issued of two early warnings for
heavy rains and consequent hydro-geological damage for those regions. The events
were instead of minor intensity and afterwards classified as false-alarm cases by the
civil protection authority.
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Zonal mean temperature and humidity fields. Analysis +6hrs,+12 hrs forecast fields are
considered for a 18 day period starting from the 1st of June 2008. The zonal mean
orography is reported on the bottom part of the figure. Important to notice is the
change in the humidity field introduced by the 1DVAR



Descriprion of methods Validation Period Results Conclusions
0000 000 0®00 oo

Assimilation Gycle: Inside radar domain Assimilation Gycle: Outside radar domain
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3 hourly cumulative mean precipitation during the first 24-hour assimilation window and
the first +24hr forecast range. Only points with RR > 5 mmday are used.
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Intensity-spatial scale RR verification

Heioke skil score
min Score: 0.0
max Score: 0.5 N-RAD (COSMO-CMORPH) mm2dn

Heidke sl score Heldke siil score
min Score: 00 min Score: 0.0
M Score: 05 LHN (COSMO-CMORPH) mm2en max Score: 0.5 1DVAR (COSMO-CMORPH) ~ mimi2dhy

H
H
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Spatial Scale of aggregation (km)

Spatial Scale of aggregation (km)

Spatial Scale of aggregation (km)

501 > > 310 315 >3 >50 01 31 >5 3100 315 >3 >50 501 >1 >5 3100 15 >3 >%0
Precipitation threshold (mm) Precipitation threshold (mm) Precipitation threshold (mm)

Heidke mean skill score as a function of the spatial scale of aggregation and the
accumulation rain rate for the +24-h forecast.
(hits+correct negative)-(expected correct)persistence

total event -(expected correct)persistence
This score measures the fraction of correct forecasts after eliminating those
forecasts which would be correct due purely to the random chance, here
considered equivalent to the persistence (i.e. no change from previous forecast).
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Bias and RMSE relative to the 2m dry and wet temperatures obtained for the
17 days considered, at 00 UTC (ANALYSIS) and at 12 UTC (+12 hr forecast).
Last panel: total number of synop stations used in the comparison
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@ For the 18 days of June 2008 taken as test period, the impact of RR

assimilation is found beneficial for the forecast of RR amount in the first
few hours of free forecast when using any of the two techniques.
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to sustain in time the induced modification to the precipitation field.

© The larger benefit in the forecast scores produced by the 1Dvar is mainly
due to the capability of this method to provide to the nudging scheme
vertical increments of temperature and humidity which are solution of a
cloud scheme and therefore more dynamically consistent with the
induced precipitation change



Conclusions

@ For the 18 days of June 2008 taken as test period, the impact of RR
assimilation is found beneficial for the forecast of RR amount in the first
few hours of free forecast when using any of the two techniques.

@ Nevertheless, the 1Dvar showed to outperform the LHN in the capability
to sustain in time the induced modification to the precipitation field.

© The larger benefit in the forecast scores produced by the 1Dvar is mainly
due to the capability of this method to provide to the nudging scheme
vertical increments of temperature and humidity which are solution of a
cloud scheme and therefore more dynamically consistent with the
induced precipitation change

Q Intensity-scale verification showed that most of the benefit arising from
the assimilation of radar derived rain rate is due to the improvement in
the prediction of precipitation amount while the impact in the
precipitation localization is of minor importance.
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See you in two years time...
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