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What can we expect from Radar RR assimilation?

Maps of mean precipitation accumulations (1 month) from USA radar network
(NEXRAD), differences ECMWF forecast minus NEXRAD and ECMWF
forecast with RR assimilation minus CTRL. The mean error in the model
precipitation is not greatly modified by the additional NEXRAD
observations, except for a further reduction of rainfall over SEasUS for
the 06 h range Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.

Other findings were that

USA have a lot of in-situ humidity
obserations

when these are actually removed from
the assimilation the impact of radar
observation is highly strenghtned

therefore the use of radar data can be
more important in areas less covered
by observations

Lopez P. and P. Bauer: 2006 Mon. Wea. Rev.
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COSMO RR assimilation

Impact of latent heat nudging for 60 days against radar observations.
(COSMO-DE)
from Stephan K, Klink S, Schraff C. 2008.QJRMS
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Outline

“Italian”Motivation

The Italian radar network is planned to become fully operational in 2011.
The successful use of radar derived products, and in primis of the derived
rain rate, is clearly desirable not only for monitoring purposes but also for the
substantial data enrichment of high resolution assimilation systems based on
rapid update cycles
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Latent Heat nudging

Assumption: The precipitation rate in a column is proportional to the latent heat
release. If there are differences between modelled rain rates, RRb , and the observed
ones RRobs , the scheme adds a latent heat term to the equation describing the
temperature tendency.
Implementation:
The LHN temperature increment, ∆TLHN , is performed by scaling the background
temperature vertical profile with the ratio of analysed to modeled precipitation rate
according to equation:

∆TLHN =

„
RRana

RRb
− 1

«
∆TLHmodel (1)

where the analysed precipitation rate is a weighted mean of observed and modeled
precipitation rate (RRana= β· RRobs+(1- β) · RRb).
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1DVAR

Assumption: . The precipitation rate in a column is a “solution” of the large-scale and
convection cloud schemes. If there are differences between modelled rain rates,RRb ,
and observed ones RRobs , a simplified linearised scheme search the best increments
in the temperature and humidity profiles which minimise the RR differences taking into
account the estimated error in the model and observations
Implementation:
The 1DVAR temperature and humidity increments, ∆T1DVAR ,∆Q1DVAR are solutions of:

J(x) = 1
2 (x− xb)T B−1(x− xb)+

+ 1
2 (H(x)− RRobs)T R−1(H(x)− RRobs)

(2)

where H is the operator simulating the observed data from the model variable x, R is
the observation error matrix which includes measurement errors and
representativeness errors, including errors in H, and B is the background error
covariance matrix of the state xb . The superscripts −1 and T denote inverse and
transpose matrices, respectively
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Method Differences

In both cases the observation is at the ground. The LHN uses the differences
in RR to rescale the whole temperature profile. The 1DVAR instead
propagates “vertically “ the differences using a linearised cloud model.
The 1DVAR retains information on the model and observation errors through
the B and R matrices.
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When they work ok and ... when they don’t!

RRobs = 0 and RRb = 0 No winner, No looser!
RRobs > 0 and RRb = 0

LHN ∆TLHmodel = 0 there can’t be an increment (the
algorithm applies a grid-point search for a suitable
∆TLHmodel profile)

1DVar The cloud operator H(xb )=0 therefore

J(x) =
1
2

(−y)T R−1(−y)

which does not depend anymore on the temperature
and humidity profiles. The increments are null.

RRobs = 0 and RRb > 0
LHN RRana= β· RRobs+(1- β) · RRb = 0 !! the de-crement

is setto aa fixed ammount.
1DVar No problems! works very efficiently

RRobs > 0 and RRb > 0 Each method plays its
game !
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Radar data – RR derivation

Figure: Integration domains for
COSMO used in this study. The circles
represent the spatial range (data
coverage) of the two polarimetric radars
used.

Reflectivity converted in RR using Marshall-Palmer

Z = a R b

with a = 400 and b = 1.5

Error on RRobs needed to calculate the R matrix
following:

ε = (1−Q) + 0.2
„

σ

σmax

«
Q

where:
Q is a number in the range [0;1]; quality parameter
σ sub-grid scale orography from a high
resolution (∼90 m) DEM
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Radar data – Data thinning

Figure: Auto-correlation field as a function of distance for the
reflectivity fields. Two possible fitting function are displayed from which the
e-folding distance is calculated; an exponential function f(x) = a0 ea1 x with
least-square best fit parameters a0 = 0.87 and a1 = −0.03; and a
non-linear function combination of a Gaussian and a quadratic function

f(x) = A0 e
− 1

2

x−A1

A2

2

+ A3 + A4 x + A5 x2 , with parameters A0 =1.61,

A1 =-33.18, A2 =18.56, A3 =0.68, A4 =-0.01 and A5 =5.6 10−5 . Small embedded
picture: the derivative of the auto-correlation field.

High density observations with correlated errors can
produce a degradation of the analysis because of the
potential spreading of error in correlated neighbouring
pixels

temporal data thinning is simply performed by
selecting data at a specific interval of 15 minutes

the spatial sampling is determined by the
decorrelation length of the reflectivity
auto–correlation field
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Synoptic Regime

Sequence of the +24h forecast cumulative precipitation (mm/day)for the two
assimilation experiments (LHN,1DVAR) the control (N-RAD) and has observed by the
CMORPH dataset. Very heavy precipitation were predicted over the Eastern part of the
Alps by the COSMO model in its operational configuration. The 4th and the 12th of
June the prediction of severe thunderstorm caused the issued of two early warnings for
heavy rains and consequent hydro-geological damage for those regions. The events
were instead of minor intensity and afterwards classified as false-alarm cases by the
civil protection authority.
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Temperature and humidity fields

Zonal mean temperature and humidity fields. Analysis +6hrs,+12 hrs forecast fields are
considered for a 18 day period starting from the 1st of June 2008. The zonal mean
orography is reported on the bottom part of the figure. Important to notice is the
change in the humidity field introduced by the 1DVAR
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Cumulative Precipitation

3 hourly cumulative mean precipitation during the first 24-hour assimilation window and
the first +24hr forecast range. Only points with RR > 5 mmday are used.
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Intensity-spatial scale RR verification

Heidke mean skill score as a function of the spatial scale of aggregation and the
accumulation rain rate for the +24-h forecast.

HHS =
(hits+correct negative)-(expected correct)persistence

total event -(expected correct)persistence
(3)

This score measures the fraction of correct forecasts after eliminating those
forecasts which would be correct due purely to the random chance, here
considered equivalent to the persistence (i.e. no change from previous forecast).
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Surface variables

Bias and RMSE relative to the 2m dry and wet temperatures obtained for the
17 days considered, at 00 UTC (ANALYSIS) and at 12 UTC (+12 hr forecast).
Last panel: total number of synop stations used in the comparison
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Conclusions

1 For the 18 days of June 2008 taken as test period, the impact of RR
assimilation is found beneficial for the forecast of RR amount in the first
few hours of free forecast when using any of the two techniques.

2 Nevertheless, the 1Dvar showed to outperform the LHN in the capability
to sustain in time the induced modification to the precipitation field.

3 The larger benefit in the forecast scores produced by the 1Dvar is mainly
due to the capability of this method to provide to the nudging scheme
vertical increments of temperature and humidity which are solution of a
cloud scheme and therefore more dynamically consistent with the
induced precipitation change

4 Intensity-scale verification showed that most of the benefit arising from
the assimilation of radar derived rain rate is due to the improvement in
the prediction of precipitation amount while the impact in the
precipitation localization is of minor importance.
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One last thing ....

Do svidania ceres dva goda..

?
See you in two years time...
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