Influence of terrain-following coordinates on nearly hydrostatic flows in EULAG

Marcin Kurowski, Zbigniew Piotrowski, Bogdan Rosa, Michał Ziemiański

Institute of Meteorology and Water Management (IMGW), Warsaw, Poland

OUTLINE

1. Motivation
2. Temperature profiles within anelastic framework
3. Setup of the experiment
4. Results

- atmosphere at rest
- shear flow

5. Conclusions

1. Motivation

Well known computational problem:

coordinates	hydrostatic flow Cartesian well balanced (vertical and horizontal equations of motion are separated) (e.g. terrain-following)\simtransformation to model coordinates leads to residual buoyancy in model equations and may drive artifitial flow; multidimensional

OBJECT: verify the influence of errors associated with terrain-following coordinates on the EULAG's solutions for nearly hydrostatic flows in a presence of orography

2. Temperature profiles within anelastic framework

- Generic form of inviscid anelastic ($\rho^{\prime} \leqslant \bar{\rho}$) equations of motion (Lipps and Hemler, 1982, JAS):

$$
\begin{equation*}
\frac{D \vec{u}}{D t}=-\nabla \frac{p-\bar{p}}{\bar{\rho}}+\vec{g} \frac{\theta-\bar{\theta}}{\bar{\theta}}-\vec{f} \times \vec{u}, \tag{1}
\end{equation*}
$$

where $\{\bar{p}, \bar{\rho}, \bar{\theta}\}$ is hydrostatic basic state, horizontally homogeneous and of constatnt stability (Clark and Farley, 1984, JAS)

- Assuming underlaying particular geostrophically balanced solution of (1):

$$
\begin{equation*}
0=-\nabla \frac{p_{e}-\bar{p}}{\bar{\rho}}+\vec{g} \frac{\theta_{e}-\bar{\theta}}{\bar{\theta}}-\vec{f} \times \vec{u}_{e} \tag{2}
\end{equation*}
$$

and subtracting (2) from (1) yields a common perturbational form:

$$
\begin{equation*}
\frac{D \vec{u}}{D t}=-\nabla \frac{p-p_{e}}{\bar{\rho}}+\vec{g} \frac{\theta-\theta_{e}}{\bar{\theta}}-\vec{f} \times\left(\vec{u}-\vec{u}_{e}\right), \tag{3}
\end{equation*}
$$

where θ_{e} is thought to be reference (environmental) hydrostatic profile, no longer required to have constant stability.

2. Temperature profiles within anelastic framework

For a mean flow initial condition is said to be hydrostatically balanced, i.e.

$$
\begin{equation*}
\theta^{\prime}=\theta-\theta_{e}=0 \tag{4}
\end{equation*}
$$

around which perturbations are being enabled to develop.
... but imagine the situation (typical in weather forecasting) where reference state θ_{e} is some arbitrary (e.g. seasonal, annual, etc.) state and actual mean temperature is biased ($\left\langle\theta^{\prime}\right\rangle \neq 0$, e.g. >0 in Summer)?

2. Temperature profiles within anelastic framework

For a mean flow initial condition is said to be hydrostatically balanced, i.e.

$$
\begin{equation*}
\theta^{\prime}=\theta-\theta_{e}=0 \tag{4}
\end{equation*}
$$

around which perturbations are being enabled to develop.
... but imagine the situation (typical in weather forecasting) where reference state θ_{e} is some arbitrary (e.g. seasonal, annual, etc.) state and actual mean temperature is biased ($\left\langle\theta^{\prime}\right\rangle \neq 0$, e.g. >0 in Summer)?

It is necessary to correct the form of pressure potential, in order to recall the environment to be initially well balanced.

2. Temperature profiles within anelastic framework

$$
\begin{equation*}
\frac{D \vec{u}}{D t}=-\nabla \frac{p-p_{e}}{(\bar{\rho}} \prod_{\substack{\prod_{p} \\ \text { pressure potential } \psi}}^{\psi} \frac{\theta-\theta_{e}}{\bar{\theta}}-\vec{f} \times\left(\vec{u}-\vec{u}_{e}\right) \tag{3}
\end{equation*}
$$

Correction to pressure potential comes from hydrostatic equation:

$$
\begin{equation*}
0=-\nabla \psi_{\text {bias }}+\vec{g} \frac{\theta_{\text {bias }}}{\bar{\theta}}, \tag{5}
\end{equation*}
$$

and this modification ($\Psi_{\text {bias }}$) is put into initial environmental state ψ. After this procedure pressure perturbation is being calculated around $\psi+\Psi_{\text {bias }}$.

Anelastic approximation in EULAG allows to work with three different temperature profiles $\left\{\bar{\theta}, \theta_{e}, \theta\right\}$.

3. Setup of the experiment

Background anelastic profile (Clark and Farley, 1984, JAS):

$$
\begin{equation*}
\bar{\theta}(z)=\theta_{0} e^{\frac{N^{2}}{g} z}, \tag{6}
\end{equation*}
$$

where $\mathrm{N}=0.01 \mathrm{1} / \mathrm{s}$, ground values of temperature and pressure

$$
\begin{aligned}
\theta_{0} & =T_{0}=288.15 \mathrm{~K} \\
p_{0} & =10^{5} \mathrm{~Pa}
\end{aligned}
$$

Reference (environmental) state was defined in log-pressure coordinates as:

$$
\begin{equation*}
C=\frac{d T}{d \log p}=0.42 \tag{7}
\end{equation*}
$$

what means that temperature profile has a form:

$$
\begin{equation*}
T(z)=T_{0} \sqrt{1-a z} \tag{8}
\end{equation*}
$$

where:

$$
\begin{equation*}
a=\frac{2 \mathrm{gC}}{R} T_{0}^{2} \tag{9}
\end{equation*}
$$

3. Setup of the experiment

$$
\begin{equation*}
\theta_{e}(z)=T_{0} \sqrt{1-a z} e^{\frac{T_{0} R}{C c_{p}}(1-\sqrt{1-a z})} \tag{10}
\end{equation*}
$$

$$
z_{t}=\frac{1}{a}\left(1-\frac{C c_{p}}{R T_{o}}\right) \approx 21.3 \mathrm{~km} \quad \text { where stability drops to } 0
$$

3. Setup of the experiment

3. Setup of the experiment

Basic domain size $320 \times 20 \mathrm{~km}$ (1x0.4km)
2 types of flow:

- atmosphere initially at rest
- shear flow (Schar et al. 2002)

2 types of mountain:

- gaussian

$$
h(x, z)=h_{0} e^{\left(-\left(\left(x-x_{0}\right) / \sigma\right)^{2}\right)}
$$

- Schar mountain

$$
\sigma=8 \mathrm{~km}
$$

$$
h(x, z)=h_{0} \cos \left(\pi\left(x-x_{0}\right) / x_{c}\right)^{2} \cos \left(\left(\pi\left(x-x_{0}\right)\right) / \sigma\right)^{2}
$$

2 strategies:

- no initial perturbation
- initial perturbation introduced to velocity field ($10 \mathrm{e}-3 \mathrm{~m} / \mathrm{s}$)

Time of simulations $=10 \mathrm{~h}$

4. Results

Atmosphere initially at rest /periodic and rigid b.c. tested/

Vertical (a) and horizontal velocity (b) after 10h of simulation - max. fluctuations $\mathrm{O}\left(10^{-13}\right) \mathrm{m} / \mathrm{s}$

Every non-zero velocity is distortion from analytic solution

4. Results

4. Results

Vertical velocity after 10h for Schar mountain

4. Results

Vertical velocity after 10h for Schar mountain

4. Results

Shear flow
specified as in Schar et al. (2003)

$$
u(z)=u_{0}\left\{\begin{array}{ll}
1 & \text { for } z_{2} \leq z \\
\sin ^{2}\left(0.5 \pi\left(z-z_{1}\right) /\left(z_{2}-z_{1}\right)\right) & \text { for } z_{1} \leq z \leq z_{2} \\
0 & \text { for } z \leq z_{1}
\end{array}\right] \begin{aligned}
& u_{o}=10 \mathrm{~m} / s \\
& z_{1}=4 \mathrm{~km} \\
& z_{2}=5 \mathrm{~km}
\end{aligned}
$$

- open boundary conditions
- lateral absorbers (20 km) in order to prevent wave reflection
- absorber in upper part of domain (13-20km)

4. Results

Vertical velocity after 10h for Schar mountain

4. Results

Vertical velocity after 10h for Schar mountain

4. Results

Comparison of maximum values of vertical velocity after 10 h of simulations

	NO FLOW		SHEAR FLOW	
	gauss	Schär	gauss	Schär
$h[\mathrm{~m}]$	$w[\mathrm{~m} / \mathrm{s}]$	$w[\mathrm{~m} / \mathrm{s}]$	$w[\mathrm{~m} / \mathrm{s}]$	$w[\mathrm{~m} / \mathrm{s}]$
0		$\mathcal{O}\left(10^{-13}\right)$		
100	$1 \cdot 10^{-5}$	$4.4 \cdot 10^{-5}$	$9.9 \cdot 10^{-3}$	$2.5 \cdot 10^{-2}$
300	$2.5 \cdot 10^{-5}$	$4.0 \cdot 10^{-4}$	$2.4 \cdot 10^{-2}$	$5.5 \cdot 10^{-2}$
500	$4.4 \cdot 10^{-5}$	$1.1 \cdot 10^{-3}$	$4.8 \cdot 10^{-2}$	$1.2 \cdot 10^{-1}$
1000	$1.5 \cdot 10^{-4}$	$4.3 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	$2.2 \cdot 10^{-1}$
2000	$8.5 \cdot 10^{-4}$	$9.3 \cdot 10^{-3}$	$2.8 \cdot 10^{-1}$	$9.1 \cdot 10^{-1}$
4000	$5.5 \cdot 10^{-3}$	$7.3 \cdot 10^{-2}$	-	-

4. Conclusion

- Artifitial fluctuations in the vertical velocity field due to terrain-following coordinate transformation depend on steepness of the slopes and are negligible for the atmosphere at rest
- For idealized shear flow vertical velocity fluctuations were of the order of mm / s to cm / s, growing up to almost $1 \mathrm{~m} / \mathrm{s}$ for extremally steep Schar mountain
- No computational problems were reported during model runs, even for very steep orography

