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Well known computational problem:

 well balanced (vertical and 
horizontal equations 

of motion are separated) 

      curvilinear 
(e.g. terrain-following)

transformation to model coordinates
leads to residual buoyancy in model
equations and may drive artifitial flow; 
multidimensional

OBJECT: verify the influence of errors associated with 
                  terrain-following coordinates on the EULAG's
                  solutions for nearly hydrostatic flows 
                  in a presence of orography

   coordinates                      hydrostatic flow

Cartesian 

1. Motivation
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2. Temperature profiles within
        anelastic framework 

D u
Dt

=−∇
p−p


g −


−f ×u

● Generic form of inviscid anelastic (         ) equations of motion
  (Lipps and Hemler, 1982, JAS):

where {          } is hydrostatic basic state, horizontally homogeneous 
and of constatnt stability (Clark and Farley, 1984, JAS)
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(2)

(3)
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● Assuming underlaying particular geostrophically balanced
 solution of (1):

0=−∇
pe−p


g
e−


−f ×ue

and subtracting (2) from (1) yields a common perturbational form:  

D u
Dt

=−∇
p−pe


g

−e


−f ×u−ue

where     is thought to be reference (environmental) hydrostatic profile, 
no longer required to have constant stability.

,

e
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… but imagine the situation (typical in weather forecasting) where 
reference state      is some arbitrary (e.g. seasonal, annual, etc.) state 
and actual mean temperature is biased (<    >      , e.g. >0 in Summer)?  

2. Temperature profiles within
        anelastic framework 

(3)D u
Dt

=−∇
p−pe


g

−e


−f ×u−ue

e

 '=−e=0 (4)

 ' ≠0

 around which perturbations are being enabled to develop.

p '  '

For a mean flow initial condition is said to be hydrostatically 
balanced, i.e. 

u '
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2. Temperature profiles within
        anelastic framework 

(3)D u
Dt

=−∇
p−pe


g

−e


−f ×u−ue

For a mean flow initial condition is said to be hydrostatically 
balanced, i.e. 

 '=−e=0 (4)

 around which perturbations are being enabled to develop.

It is necessary to correct the form of pressure potential, 
in order to recall the environment to be initially well balanced.

p '  '

… but imagine the situation (typical in weather forecasting) where 
reference state      is some arbitrary (e.g. seasonal, annual, etc.) state 
and actual mean temperature is biased (<    >      , e.g. >0 in Summer)?  

e
 ' ≠0

u '
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2. Temperature profiles within
        anelastic framework 

D u
Dt

=−∇
p−pe


g

−e


−f ×u−ue

pressure potential 

Correction to pressure potential comes from hydrostatic 
equation:

0=−∇biasg
bias



(3)

(5)

and this modification (        ) is put into initial environmental 
state     . After this procedure pressure perturbation is being 
calculated around               .

,

bias


bias

Anelastic approximation in EULAG allows to work with 
three different temperature profiles {            }. ,e ,
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what means that temperature profile has a form:

3. Setup of the experiment

Background anelastic profile (Clark and Farley, 1984, JAS): 

 z =0e
N 2

g
z

where N=0.01 1/s, ground values of temperature and 
pressure

(6)

0=T 0=288.15K

p0=105 Pa

Reference (environmental) state was defined in log-pressure 
coordinates as:

C=
dT

dlogp
=0.42 (7)

T  z =T 01−az

,

,

(8)

where:
a=2gC

R
T 0

2 (9)
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3. Setup of the experiment

e  z =T 01−az e
T0 R
Cc p

1−1−az
(10)

zt=
1
a 1−

Cc p

RT o ≈21.3 km where stability drops to 0
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3. Setup of the experiment
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3. Setup of the experiment

2 types of flow:
● atmosphere initially at rest
● shear flow (Schar et al. 2002)

2 types of mountain:
● gaussian 

● Schar mountain

2 strategies:
● no initial perturbation
● initial perturbation introduced to velocity field 
(10e-3m/s)

Basic domain size 320x20km (1x0.4km)

h x , z =h0e − x−x0 /
2 

h x , z =h0cos x− x0/ xc
2 cosx−x0/ 2

=8km
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Time of simulations = 10h



  

4. Results
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Atmosphere initially at rest           /periodic and rigid b.c. tested/

Vertical (a) and horizontal velocity (b) after 10h of 
simulation – max. fluctuations O(10-13)m/s

Every  non-zero velocity is distortion from analytic solution



  

4. Results 
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h=100m , O(10-6) m/s h=300m, O(10-5)m/s

Vertical velocity 
after 10h for gaussian
mountain

h=1000m, O(10-4)m/s h=2000m, O(10-4 )m/s      h=4000m, O(10-3 )



  

4. Results 
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h=100m , O(10-5) h=300m, O(10-4)

h=1000m, O(10-3) h=2000m, O(10-3 )       

Vertical velocity 
after 10h for Schar
mountain



  

4. Results 
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Vertical velocity 
after 10h for Schar
mountain

w      u

h=4000m, O(10-2)     O(10-2 )



  

4. Results
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Shear flow  
specified as in Schar et al. (2003)

● open boundary conditions
● lateral absorbers (20km) in order to prevent wave reflection
● absorber in upper part of domain (13-20km)

uo=10m / s
z1=4km
z 2=5km



  

4. Results
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h=100m , O(10-2) h=300m, O(10-2)

h=1000m, O(10-1) h=2000m, O(10-1 )      

Vertical velocity 
after 10h for Schar
mountain



  

4. Results
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Vertical velocity 
after 10h for Schar
mountain

h=100m , O(10-2) h=300m, O(10-2)

h=1000m, O(10-1) h=2000m, O(10-1 )      



  

4. Results
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Comparison of maximum values of vertical 
velocity after 10h of simulations



  

4. Conclusion
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● Artifitial fluctuations in the vertical velocity field due to 
terrain-following coordinate transformation depend on 
steepness of the slopes and are negligible for the atmosphere 
at rest

● For idealized shear flow vertical velocity fluctuations were 
of the order of mm/s to cm/s, growing up to almost 1m/s for 
extremally steep Schar mountain 

● No computational problems were reported during model 
runs, even for very steep orography
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