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Purpose of the review on LETKF

I Check the existing literature and experience.

I Critically examine the operational usability of the

technique.



Advantages of LETKF

I Simplicity

No explicit B matrix modeling is needed (no spatial

covariances and no explicit balance operators).

I Computational efficiency

- Working in low-dimensional ensemble space.

- Locality: as in OI, LETKF analysis computations at all grid

points are mutually independent.

I Flow-dependent covariances

I 4D-LETKF



LETKF. Analysis step: key features

1. At each analysis grid point, the analysis is performed locally:

using only nearby observations from a box (cylinder,

ellipsoid,. . . ) surrounding the grid point

2. The analysis is performed in ensemble space: within each local

box, the analysis increment belongs to the subspace spanned

by ensemble deviations, xf
i − xb.

3. ‘Observation localization’: the R−1 entries are multiplied by a

monotonically decaying function of the distance between the

center of the box and the particular observation (within the

box)



The ensemble-space approach

ei :=
1√

ne − 1
(xf

i − xb),

E = (e1 · · · ene ).

z =
ne∑︁
i=1

z̃iei ≡ Ez̃.



Observation operator in ensemble space

xo = ℋ(xb) + H(x− xb) + 𝜂 + 𝜂lin,

x− xb = Eỹ + 𝜂et

H̃ = H · E



Analysis equations

ỹa = K̃ · yo ,

K̃ = (I + H̃TR−1H̃)−1H̃TR−1,

xa = xb + Eloc · ỹa



1. A finite-difference approximation to H

H̃ỹ ≡ HEỹ ≡
∑︁

ỹi ·Hei

Device: approximate Hei by
1
s (ℋ(xb + sei )−ℋ(xb)), where

s :=
√

ne − 1

Statement: the covariance matrix of the sum 𝜂lin + 𝜂′fd is larger

than that of 𝜂lin

Conclusion: Not critical.



2. With non-local satellite observations, the effective box

size becomes large

Global ensemble vectors are used to fit observations.

ai ≥ |suppℋ|i

Radiances: supp=20-30 km in the vertical.

GPS: support up to 1000 km in the horizontal.

Conclusion: Important.



3. Within large effective boxes, affordable ensemble size

implies poor analysis resolution and hence accuracy

Strict limitation of the ensemble size:

ne ∼ nodof

Effective resolution:

heff
i ∼ ai/ 3

√
ne .

Conclusion: Critical.



4. Small local boxes can led to small-scale noise in the

analysis increments

Analysis increment, one realization: OI box diameter 50 (solid thick

curve), LETKF box diameter 12, localization length 3 (solid thin), and

LETKF on coarse grid with post-interpolated ensemble weights (dotted).

Conclusion: Important.



5. Observation-error correlations can destroy the LETKF

computational efficiency

K̃ = (I + H̃TR−1H̃)−1H̃TR−1,

An application of R−1 requires as large as O(n3
obs) flops (Golub and

van Loan 1989). In this case, the computational advantage of the

LETKF algorithm disappears

Conclusion: Critical if R is non-diagonal.



Conclusions

1. A finite-difference approximation to H increases the error but

not critically.

2. With non-local satellite observations, the effective box size

becomes large

3. Within large effective boxes, affordable ensemble size implies

poor analysis resolution and hence accuracy

4. Small local boxes can led to small-scale noise in the analysis

increments

5. Observation-error correlations can destroy the LETKF

computational efficiency



B. Hunt:

Many of the criticisms (e.g. Sections 4.1-4.3) seem to apply

generally to ensemble square-root F. They are related to the

reduced rank approximation of the background covariance, which

necessitates some form of localization.

Nonlocal observations undoubtedly negate some of the benefits of

localization. We do what we can to overcome these issues.

Small-scale noise due to localization doesn’t strike me as hard to

overcome; for LETKF this will be one benefit of the weight

interpolation in our paper w/ Yang and Bowler, and if all else fails

then maybe one has to filter the analysis increment.



B. Hunt:

Section 4.4: If the LETKF step that scales like the cube of the

number of local observations becomes problematic, one may need

to make an approximation, which could involve simply ignoring

weak error correlations.

However, it’s not clear to me that R−1 needs to be computed from

scratch at each analysis time. Even though the observation data set

changes, one may be able to efficiently compute a good

approximation for R−1 using the R−1 (Also, weight interpolation

will help by reducing the number of local analyses.)



B. Hunt:

Section 6, 1st paragraph: I disagree here. The LETKF analysis

increment is NOT a linear combination of the ensemble

perturbations, since it weights the perturbations differently at each

grid point. Locally it is close to a linear combination of the

ensemble perturbations, but I believe the same is true with other

ensemble Kalman filters and other methods of localization.



B. Hunt:

Section 4.2, 2nd paragraph: I strongly disagree with the suggestion

that the number of ensemble members must be comparable to the

number of local observations in order to get an accurate analysis. If

the number of local observations is larger than the number of

degrees of freedom allowed by the local dynamics, then I think

smoothing the observations is a good thing. If the ensemble

represents the background covariance well, I don’t see that the

number of observations matters.



B. Hunt:

I think we will continue to disagree about the necessary size of the

ensemble. I maintain that the relevant comparison is to the effective

number of degrees of freedom of the (local) model dynamics, and

that any additional "degrees of freedom"in the observations are

largely an illusion. By effective number of degrees of freedom, I

mean the number of dimensions in model space needed to capture

most of the background uncertainty. I understand that this number

may depend on model resolution, but I still believe it is much

smaller than the number of available observations.



B. Hunt:

Perhaps we can agree that there’s a trade-off here; ensemble

Kalman filters may not resolve small-scale information as well as

high-dimensional analyses, but they may quantify the large-scale

"errors of the day"(temporal and spatial fluctuations in background

uncertainty) better than is practical with a high-dimensional

approach.



QJ referees:

I think it is generally very difficult to prove that an algorithm will

never become operational. When several groups of clever people are

working on an algorithm existing problems are likely to get resolved

in one way or another.

. . .

I feel the question posed in the title is impossible to answer by a

scientific study.



QJ referees:

Many, if not all, operational data assimilation systems assume that

the covariance matrix for the observational error is diagonal.

. . .

It is possible (done in several operational systems) to perform the

forward operator towards the GPS-RO observations by only

considering a vertical column of model coordinates

. . .

The author is correct that localization in the ensemble-based

schemes can generate small scale noise. But, the effect of such

noise can be controlled by initialization.


