

Variants of Ensemble Kalman Filter algorithms

pros and cons

Andreas Rhodin

Deutscher Wetterdienst

COSMO General Meeting, Offenbach September 7, 2009

< 回 ト < 三 ト < 三 ト

Motivation

2 Foundations of Ensemble Data Assimilation Systems

3 Localisation

Practical Implementations

- Process observations in patches
- EnSRF: Ensemble Square Root Filter
- LETKF (Hunt et al. 2007)
- VarETKF: Variational ETKF
- 3D-Var: parameterise **B**

5 Pros and Cons

6 Conclusions ?

7 References

Motivation

- An ensemble data assimilation system is under development for COSMO.
- As a first candidate the LETKF variant following Hunt et al. (2007) has been chosen.
- Ensemble Kalman filter in general and the LETKF in particular has been criticised to have a number of shortcomings. (cf. subsequent talk of Mikhail Tsyrulnikov)
- The goal of this talk is to revisit the rational for this choice and for possible alternatives.

A B M A B M

Why LETKF (for COSMO)

- An Ensemble Forecasting system is currently build up in order to quantify the uncertainties of the forecast.
- A more theoretically founded assimilation system than the current (nudging-) scheme is desired.
- The prerequisites to build up a 4D-Var are not given. (adjoint model, 'smooth' physics)
- An Ensemble Assimilation Systems is a natural choice for a data assimilation system that at the same time provides initial values for a forecast ensemble.
- Ensemble data assimilation systems came up (relative) recently. There is a chance to participate in the early development phase and not to lag behind the developments of others.
- The LETKF is a particularly fast EnKF implementation.
- Alternatives to the EnKF (currently SIR-Filter) are pursued. (with lower priority)

イロト 不得 トイヨト イヨト 二日

Foundations of Ensemble Data Assimilation Systems

 Ensemble Data Assimilation Systems use an ensemble of forecasts (with members x^b_k) to infer (flow dependent) information on the background error covariance matrix B for the data assimilation system.

$$\mathbf{B} \approx \mathbf{X} \mathbf{X}^{T}$$
 with $\mathbf{X}_{k} = \sqrt{\frac{1}{n_{k}-1}} \left(\mathbf{x}_{k}^{b} - \overline{\mathbf{x}_{k}^{b}} \right)$

- In the analysis step an ensemble of analyses is provided.
 The x^a_k represent the uncertainty of the analysis, based on :
 - the forecast error derived from the \mathbf{x}_k^f ,
 - and the prescribed observational error.
 - Model error has to be introduced explicitly into the x^f_k.
- The \mathbf{x}_k^a are the initial values for cycling the ensemble to the next analysis time.
- The **x**^{*a*}_{*k*} can be used as the initial values for forecast ensembles in general.

イロト 不得下 イヨト イヨト 二日

Limitations of Ensemble Data Assimilation Systems

• $\mathbf{B} = \mathbf{X}\mathbf{X}^{\mathsf{T}}$ is of low rank.

(compare ensemble size to number of degrees of freedom of the atmosphere).

- Small off-diagonal elements (correlations) of $\textbf{XX}^{\mathcal{T}}$ are noisy.
- nonlinearities are accounted for in the ensemble forecast, but : assumptions on linearity and normal distributions are made in the analysis step.

Precautions to deal with the low rank/noise problem are required.

This is accomplished by localisation.

Localisation: Schur product

Multiply $\mathbf{B} = \mathbf{X}\mathbf{X}^{\mathcal{T}}$ element by element with a matrix \mathbf{C} : $\mathbf{B} \rightarrow \mathbf{C} \circ \mathbf{B}$.

Requirements on **C**:

- $\mathbf{C}_{ij} \approx 1$ for large correlations in \mathbf{B}
- $\mathbf{C}_{ij} \approx 0$ for small correlations in \mathbf{B}
- $\mathbf{C} \circ \mathbf{B}$ must be positive definite.

(C positive definite is a sufficient condition).

Common choice: piecewise rational function (Gaspari & Cohn)

- C_{ij} is defined as a smooth function of $\triangle x = x_i x_j$.
- C(△x): Gaussian like function characterised by a localisation length scale λ_l.
- **C**=0 for $\triangle x$ large. (facilitates computations)
- $\lambda_I >>$ correlation length scale λ_c .
 - Do not impair covariances provided by the ensemble
 - Maintain balances

Remarks on localisation in physical space

Remarks:

- Definition of C just as a function of △x may be sub-optimal. (correlation length scales may vary for different model variables)
- Statistical considerations could be used to chose C_{ij}.

More remarks:

- To apply the Schur product on **B** in physical space is an arbitrary choice.
- Application in spectral or in wavelet representation has totally different effects. (Buehner and Charron 2007)

Ensemble Transform Kalman Filter (ETKF)

Perform the analysis using the gain matrix \mathbf{K} :

$$\begin{split} \mathbf{x}^{a} - \mathbf{x}^{b} &= \mathbf{K} \, \left(\mathbf{o} - \mathcal{H}(\mathbf{x}^{b}) \right) \\ \mathbf{K} &= \mathbf{B} \mathbf{H}^{T} \, \left(\mathbf{H} \mathbf{B} \mathbf{H}^{T} + \mathbf{R} \right)^{-1} \end{split}$$

set

$$\mathbf{B} = \mathbf{X}\mathbf{X}^{T}$$
 with $\mathbf{X}_{k} = \sqrt{\frac{1}{n_{k}-1}} \left(\mathbf{x}_{k}^{b} - \overline{\mathbf{x}_{k}^{b}} \right)$

and

H=**YX** with **Y**_k =
$$\sqrt{\frac{1}{n_k-1}} \left(H(\mathbf{x}_k^b) - \overline{H(\mathbf{x}_k^b)} \right)$$

Then the gain matrix becomes :

$$\mathbf{K} = \mathbf{X}\mathbf{Y}^T \; (\mathbf{Y}\mathbf{Y}^T + \mathbf{R})^{-1}$$

Finally derive the analysis ensemble deviations ${\boldsymbol{\mathsf{Z}}}$:

$$\mathbf{Z} = \mathbf{Y}^{T} (\mathbf{Y}\mathbf{Y}^{T} + \mathbf{R})^{-1} (\mathbf{o} - \mathcal{H}(\mathbf{x}^{b})) \text{ with } \mathbf{Z} = \sqrt{\frac{1}{n_{k}-1}} (\mathbf{x}_{k}^{a} - \mathbf{x}_{k}^{b})$$

9 / 25

Variants of localisation

For computational efficiency : apply $\mathbf{C} \circ$ on $\mathbf{B}\mathbf{H}^{\mathcal{T}}$, $\mathbf{H}\mathbf{B}\mathbf{H}^{\mathcal{T}}$ or \mathbf{R}^{-1} instead of \mathbf{B}

• Kalman Gain matrix

$$\mathbf{K} = \mathbf{B}\mathbf{H}^T (\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$$

or

$$\mathbf{K} = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{R}^{-1}$$

• pure EnKF (small set of linear equations) $\mathbf{K} = \mathbf{X}\mathbf{Y}^{T} \ (\mathbf{Y}\mathbf{Y}^{T} + \mathbf{R})^{-1}$

or

$$\mathbf{K} = \mathbf{X} (\mathbf{1} + \mathbf{Y}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{Y})^{-1} \ \mathbf{Y}^{\mathsf{T}} \mathbf{R}^{-1}$$

- localisation on **B** (requires **H**) $\mathbf{K} = \mathbf{C} \circ \mathbf{X} \mathbf{X}^T \mathbf{H}^T (\mathbf{H} \mathbf{C} \circ \mathbf{X} \mathbf{X}^T \mathbf{H}^T + \mathbf{R})^{-1}$
- localisation on \mathbf{BH}^T , \mathbf{HBH}^T $\mathbf{K} = \mathbf{C} \circ \mathbf{XY}^T (\mathbf{C} \circ \mathbf{YY}^T + \mathbf{R})^{-1}$
- localisation on \mathbf{R}^{-1} (LETKF, Hunt et al. 2007) $\mathbf{K} = \mathbf{X} (\mathbf{1} + \mathbf{Y}^{\mathsf{T}} \mathbf{C} \circ \mathbf{R}^{-1} \mathbf{Y})^{-1} \mathbf{Y}^{\mathsf{T}} \mathbf{C} \circ \mathbf{R}^{-1}$

Localisation of non-local observations

- For in-situ observations localisation on **B** and on $\mathbf{HBH}^{\mathcal{T}}$ is fully equivalent.
- For non-local (remote sensing) observations the two approaches are different.
- For non-local observations and localisation on **B** and on **HBH**^T the following parameters must be prescribed:
 - The spatial location of the observation.
 - The λ_l used for in-situ observations may be not suitable as the scale of the footprint λ_o may be much larger than the correlation length scale λ_c.
 - It has been proposed to (Fertig et al. 2007)
 - Increase λ_l to be at least as large as λ_o for non-local observations. Note:
 - ► There is the mathematical constrained that **C HBH**^T is positive definite.
 - There is no such constraint on $\mathbf{C} \circ \mathbf{R}^{-1}$ for the LETKF.
 - Using different localisation scales for different observation types will lead to inconsistencies.

A.Rhodin (DWD)

Practical Implementations considered

Variants of localised ETKF :

- process observations in patches
- EnSRF Ensemble Square Root Filter
- LETKF following Hunt et al. 2007
- VarETKF following Buehner 2005

Variants of 3D-Var :

- VarETKF following Buehner 2005 (again)
- 3D-Var: use parameterised B

Process observations in patches

- For linear *H* the analysis step may be split into multiple steps without changing the final result:
 - Oerive the Ensemble deviations Y in observation space from the background ensemble deviations X.
 - Our of the observations to derive the analysis ensemble deviations Z from Y and X.
 - replace the background ensemble X by the Z, repeat step 1,2,3 with another subset.
- Processing patches with a limited number of observations at a time turns the large problem into a number of smaller problems this may be utilised for parallelisation.
- The 4D-EnKF (to be used for COSMO) makes use of the opposite relationship: Observations made at different times max be processed together at a later time.

13 / 25

イロト イポト イヨト イヨト 二日

EnSRF: Ensemble Square Root Filter

• The EnSRF (Anderson 2003, Anderson and Collins 2007) also processes the observations in patches.

In the extreme case: only one observation at a time.

- In contrast to the previous algorithm the EnSRF does not recalculate the Y from the X in each iteration, but directly updates the Y:
 - Oerive the Ensemble deviations Y in observation space from the background ensemble deviations X.
 - Our of the observations to derive the analysis ensemble deviations Z from Y and X.

At the same time update the \boldsymbol{Y} by a similar procedure.

replace the background ensemble X by the Z, repeat steps 2,3 with another subset.

• Consequences:

- $H(\mathbf{x})$ is applied only once.
- ► Localisation is performed on **HBH**^T.

LETKF (Hunt et al. 2007)

- The LETKF makes independent analyses for every grid-point using only observations within a certain localisation radius.
- Consequences:
 - Localisation is performed on \mathbf{R}^{-1} .
 - Technically different localisation length scales may be used for different observation types.

However, this may lead to inconsistencies.

 The algorithm can be accelerated considerably by calculating the weight matrices (1 + Y^TC∘R⁻¹Y)⁻¹ Y^TC∘R⁻¹ on a coarser grid and then interpolate to the model grid.

VarETKF: Variational ETKF following Buehner 2005

• The algorithm utilises that

 $\mathbf{B} = \mathbf{C} \circ \mathbf{X} \mathbf{X}^{\mathcal{T}}$

may be reformulated as

 $\mathbf{B} = \sum_{k} \mathbf{X}_{k}^{\prime} \mathbf{C}^{1/2} \mathbf{C}^{1/2 T} \mathbf{X}_{k}^{\prime T}.$

Here \mathbf{X}'_k is a diagonal matrix consisting of the forecast ensemble deviations.

- If an operator representation of ${\bf C}^{1/2}$ (square root of the localisation matrix) is available, this ${\bf B}$ can be used in the usual 3D-Var framework.
- Consequences:
 - Localisation is performed on $\mathbf{B} = \mathbf{C} \circ \mathbf{X} \mathbf{X}^{T}$
 - ► The Y are not derived by a linear regression. Instead the full nonlinear H(x) are used.
 - Technically localisation may be performed in any representation (spectral, wavelet) if the X'_k are represented respectively.

- Ensemble Assimilation Systems based on 3D/4D-Var
 - Run ensemble of assimilation cycle with disturbed observations and model.
 - Use parameterisation or model: B = B(p).
 Fit the parameters p (variances, length-scales,...) to XX^T.

Pros and Cons – Criteria

Computational demands Computational complexity (**H** required, $H(\mathbf{x})$ iterated) Consistent application of localisation Localisation in $\triangle x$ only Usage of nonlinear H in analysis

3

Computational demands

CPU-time requirements:

- The analysis step must be fast (few number of minutes) as is has to be cycled in real time. (cycle period down to 15 min ?)
- The requirements of the LETKF and the EnSRF have been compared by Whitaker (2008) :

The CPU-time requirements are comparable, but depend on number of grid-points, number of observations, etc.

The enhancement of the LETKF by performing analyses on a coarser grid has not been taken into account.

• CPU-time requirements of other algorithms are not considered in detail, but are probably larger.

Computational complexity

Computational complexity:

- The current 4D-EnKF design for COSMO separates :
 - ► Application of the observation operators H(x) at the appropriate time in the model.
 - Performing the analysis at a later time in the LETKF.

Consequently algorithms which repeatedly apply $H(\mathbf{x})$ cannot be used without changing the design.

Application of localisation

- Consistent application of localisation
 If localisation is not applied on B but on HBH^T or on R⁻¹ there is the risk of inconsistencies in the algorithm, especially if different localisation length scales are applied for different observation types.
- Optimal application of localisation
 If the localisation function is applied merely in physical space it may
 be sub-optimal, especially for observations which measure integrated
 quantities. Algorithms which do not rely on localisation in space may
 have advantages.

Pros and Cons

algorithm to be used for	patches	EnSRF	LETKF COSMO	Var-EnKF GME/ICON	3D-Var
localisation	В	$\mathbf{H}\mathbf{B}\mathbf{H}^{T}$	\mathbf{R}^{-1}	B	$\mathbf{B}(p)$
requirements					
requires H	no	no	no	yes	yes
iterates $H(\mathbf{x})$	yes	no	no	yes	yes
requires $\mathbf{B}(p)$	no	no	no	no	yes
is fast	no?	?	yes	no?	no?
functionality					
consistent C • HBH ^T	yes	?	no	yes	yes
localisation in $ riangle x$	yes	yes	yes	no	no
nonlinear <i>H</i>	no	no	no	yes	yes

COSMO GM, Sept 7, 2009

Conclusions ?

- We cannot get everything at the same time : A fast algorithm without drawbacks that does not conflict with the 4D-EnKF-Design.
- LETKF may be replaced by the EnSRF without changing the design. Not clear if EnSRF cures the localisation problems.
- Wait for first experiences with the COSMO-LETKF.
 We currently do not know relevant parameters of the setup.
 Localisation strength has to compromise noise and balance.
- Wait for first experiences with the GME-VarETKF.

References

Jeffrey L. Anderson and Nancy Collins.

Scalable implementations of ensemble filter algorithms for data assimilation.

Journal of Atmospheric and Oceanic Technology, 24:1452–1463, 2007.

Jeffrey L. Anderson. A local least squares framework for ensemble filtering. *Mon. Wea. Rev.*, 131:634–642, 2003.

.

Mark Buehner and Martin Charron.

Spectral and spatial localization of background-error correlations for data assimilation.

Q.J,R.Meteorol.Soc, 133:615-630, 2007.

Mark Buehner.

Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. *Q.J,R.Meteorol.Soc*, 131:1013–1043, 2005.

Elana J. Fertig, Brian R. Hunt, Edward Ott, and Istvan Szunyogh. Assimilating non-local observations with a local ensemble Kalman filter.

Tellus, 59A:719-730, 2007.

B. R. Hunt, E. J. Kostelich, and I. Szunyogh.

Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter.

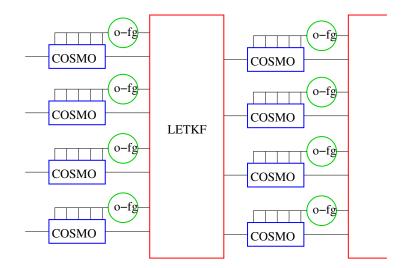
Physica D, 230:112–126, 2007.

Jeff Whitaker.

Computational issues: An EnKF perspective.

Talk at the WWRP/THORPEX workshop on 4D-Var and Ensemble Kalman Filter inter-comparisons, Buenos Aires - Argentina, 2008.

EnKF for COSMO: 4D-EnKF



A.Rhodin (DWD)

pros & cons EnKl

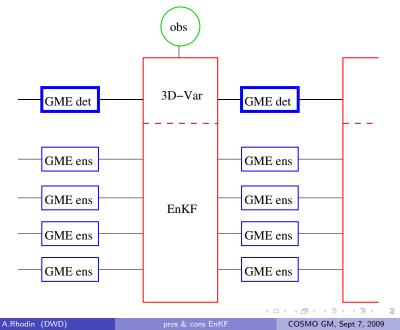
COSMO GM, Sept 7, 2009

<ロ> (日) (日) (日) (日) (日)

24 / 25

- 34

EnKF for GME/ICON: hybrid 3D-Var/EnKF (VarETKF)



25 / 25