Spatial satellite observation-error covariances for AMSU-A: estimation and implications for data assimilation

V Gorin and M Tsyrulnikov

Offenbach, 7 Sept. 2009

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

In the past: accurate in-situ observations and poor forecats

Motivation

In the past: accurate in-situ observations and poor forecats

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Now: Satellite observations are comparable with the background both in accuracy and numbers

Motivation

In the past: accurate in-situ observations and poor forecats

Now: Satellite observations are comparable with the background both in accuracy and numbers

Conclusion: spatial statistics for satellite data seems to be now of comparable importance for data assimilation as the widely used background-error statistics

ション ふゆ く は マ く ほ マ く し マ

Scope

- 1. Objective estimation of satellite observation-error spatial statistics for microwave AMSU-A observations
- 2. Impact assessment of using correct satellite-error covariances in data assimialtion (in 3D-Var)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Estimation: methodology

In the most general terms, we compare satellite data with collocated radiosonde observations

$$cov(s-r,s-r)$$
 $r = \mathcal{H}(\mathbf{X}^{obs}_{raob})$

The basic assumptions in this study: radiosonde errors r' := r - t do not correlate with: (i) radiosonde errors for different radiosonde ascents, (ii) satellite errors s' := s - t, and (iii) forecast errors f' := f - t

ション ふゆ く は マ く ほ マ く し マ

Estimation results. Horizontal covariances

AMSUA covariance (pre-filter)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Horizontal covariances (smoothed)

AMSUA Covariance (smoothed)

Inter-channel cross-correlations

Horizontal distance, km

Other correlations

Seasonal contrasts: winter horizontal correlations appear to be about twice as broad as summer correlations.

Inter-satellite cross-covariances (NOAA-18 against NOAA-19): no significant differences as compared to auto-covariances for each satellite separately.

ション ふゆ く は マ く ほ マ く し マ

Satellite-error vs. forecast-errors cross-covariances

AMSUA cross covariance with FG (smoothed)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

One-point (co)variances

Channel	σ_w	σ_{c}	σ_f	σ_w/σ_c	corr(c', f')
6	0.12	0.15	0.20	0.6	0.50
7	0.14	0.21	0.16	0.9	0.34
8	0.17	0.21	0.15	0.8	0.39
9	0.14	0.22	0.15	0.6	0.42

Temporal satellite error covariances

Temporal correlations

Consequences for data assimilation. Spatial correlations Effect in 3D-Var. Temperature

Spatial correlations: Effects in 3D-Var. grad(T)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへの

$$\eta = Z + \omega$$

$$\eta = Z + \omega$$

$$Z_{k+1} = N_k \cdot Z_k - \tau_k$$

$$\eta = Z + \omega$$

$$Z_{k+1} = N_k \cdot Z_k - \tau_k$$

$$X_{k+1} = A_k \cdot A_k - \epsilon_k$$

$$\eta = Z + \omega$$

$$Z_{k+1} = N_k \cdot Z_k - \tau_k$$

$$X_{k+1} = A_k \cdot A_k - \epsilon_k$$

Join the two state vectors and the two forecast models, getting the system driven by the (augmented) white-noise sequence.

Design a KF for the extended state vector.

Temporal correlations: Effect in 0D-KF

6-h. correl.	0.5	0.7	0.8	0.9	0.95	0.99
Benefit	0.6%	1.6%	3.3%	4.8%	7%	14%

Conclusions

- *Horizontal* AMSU-A correlations are about as large as background-error correlations.
- Inter-channel AMSU-A correlations are also high.
- There is significant *cross-correlation* between background and AMSU-A errors.
- There are significant *temporal* AMSU-A error correlations.
- An impact study with simulated data reveals that:
 - 1. Accounting for *horizontal and inter-channel* observation-error correlations

can substantially improve the 3D-Var performance.

2. For a scalar dynamical system, the estimated observation-error *temporal* correlations <u>do not</u> lead to any tangible benefit in data assimilation.