
A new model framework Object-oriented-like approach in F90 Proposed model structure References

An object oriented model framework for the
future of COSMO model

Davide Cesari

Regional Hydrometeorological Service of Emilia-Romagna

Bologna, Italy

COSMO general meeting
Aj na, Ell�c, September 2007



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Outline

1 A new model framework
Motivation

2 Object-oriented-like approach in F90
Structure of a class

3 Proposed model structure
Available prototype
Description of the main classes
Restructuring of the namelist input
What to do further

4 References



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Outline

1 A new model framework
Motivation

2 Object-oriented-like approach in F90
Structure of a class

3 Proposed model structure
Available prototype
Description of the main classes
Restructuring of the namelist input
What to do further

4 References



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Advantages

A new object-oriented framework for the COSMO model could allow:

+ easier maintainance of the model code

+ faster introduction of scientific novelties that may emerge from
COSMO countries and the from the “formerly called” LM-users
(urban and climatological features, chemistry) in the mainstream
code without affecting the stability for operational NWP

+ native (re)introduction of features, like 2-way nesting, abandoned
because of complexity and bugs

+ more natural introduction of new features that are required by
the changes in the scientific scenario, like new Data Assimilation
techniques, (4Dvar or whatever?) etc.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Advantages

A new object-oriented framework for the COSMO model could allow:

+ easier maintainance of the model code

+ faster introduction of scientific novelties that may emerge from
COSMO countries and the from the “formerly called” LM-users
(urban and climatological features, chemistry) in the mainstream
code without affecting the stability for operational NWP

+ native (re)introduction of features, like 2-way nesting, abandoned
because of complexity and bugs

+ more natural introduction of new features that are required by
the changes in the scientific scenario, like new Data Assimilation
techniques, (4Dvar or whatever?) etc.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Advantages

A new object-oriented framework for the COSMO model could allow:

+ easier maintainance of the model code

+ faster introduction of scientific novelties that may emerge from
COSMO countries and the from the “formerly called” LM-users
(urban and climatological features, chemistry) in the mainstream
code without affecting the stability for operational NWP

+ native (re)introduction of features, like 2-way nesting, abandoned
because of complexity and bugs

+ more natural introduction of new features that are required by
the changes in the scientific scenario, like new Data Assimilation
techniques, (4Dvar or whatever?) etc.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Advantages

A new object-oriented framework for the COSMO model could allow:

+ easier maintainance of the model code

+ faster introduction of scientific novelties that may emerge from
COSMO countries and the from the “formerly called” LM-users
(urban and climatological features, chemistry) in the mainstream
code without affecting the stability for operational NWP

+ native (re)introduction of features, like 2-way nesting, abandoned
because of complexity and bugs

+ more natural introduction of new features that are required by
the changes in the scientific scenario, like new Data Assimilation
techniques, (4Dvar or whatever?) etc.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Disadvantages

- a lot of work to be done

- a change in the habits by the scientific code developers is
required

- a wrong initial planning may require big efforts later for being
corrected, with many changes spread thoroughout the code

- a lot of work to be done



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Disadvantages

- a lot of work to be done

- a change in the habits by the scientific code developers is
required

- a wrong initial planning may require big efforts later for being
corrected, with many changes spread thoroughout the code

- a lot of work to be done



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Disadvantages

- a lot of work to be done

- a change in the habits by the scientific code developers is
required

- a wrong initial planning may require big efforts later for being
corrected, with many changes spread thoroughout the code

- a lot of work to be done



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Motivation

Disadvantages

- a lot of work to be done

- a change in the habits by the scientific code developers is
required

- a wrong initial planning may require big efforts later for being
corrected, with many changes spread thoroughout the code

- a lot of work to be done



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Structure of a class

Outline

1 A new model framework
Motivation

2 Object-oriented-like approach in F90
Structure of a class

3 Proposed model structure
Available prototype
Description of the main classes
Restructuring of the namelist input
What to do further

4 References



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Structure of a class

Definition of a class-like module in F90, storage

MODULE spacetime_grid_class
USE datetime_class
IMPLICIT NONE

PRIVATE
PUBLIC spacetime_grid, ini_t, act_t, fin_t

TYPE(datetime) :: ini_t, act_t, fin_t ! Class static variables

TYPE spacetime_grid ! Instance variables
PRIVATE
TYPE(datetime) :: ini_t, act_t, fin_t
TYPE(timedelta) :: dt
INTEGER nx, ny

END TYPE spacetime_grid

END MODULE spacetime_grid_class



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Structure of a class

Definition of a class-like module in F90, storage

PRIVATE
PUBLIC spacetime_grid, ini_t, act_t, fin_t

TYPE(datetime) :: ini_t, act_t, fin_t ! Class static variables

PRIVATE should be the default whenever possible

class public static storage should be limited to the minimum
necessary (truly global variables needed by other classes)

This will avoid having long lists of USE ... ONLY in order to
document the external variables and will reduce the
cross-dependencies between classes.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Structure of a class

Definition of a class-like module in F90, storage

TYPE spacetime_grid ! Instance variables
PRIVATE
TYPE(datetime) :: ini_t, act_t, fin_t
TYPE(timedelta) :: dt
INTEGER nx, ny

END TYPE spacetime_grid

the class instance storage should have the PRIVATE attribute
when possible, but this is not as strict as the previous guidelines

This will give more freedom to change the internal structure of the
class without affecting the procedures that USE it.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Structure of a class

Definition of a class-like module in F90, storage

Benefits from F2003
Selective PRIVATE/PUBLIC attributes for single components of a
derive type and the PROTECTED attribute for read-only components.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Structure of a class

Definition of a class-like module in F90, methods

MODULE spacetime_grid_class
USE datetime_class
IMPLICIT NONE

PRIVATE
PUBLIC spacetime_grid, init, delete, compute,

INTERFACE init
MODULE PROCEDURE spacetime_grid_init

END INTERFACE

CONTAINS

SUBROUTINE spacetime_grid_init(this)
TYPE(spacetime_grid), INTENT(inout) :: this
...

END MODULE spacetime_grid_class



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Available prototype

Outline

1 A new model framework
Motivation

2 Object-oriented-like approach in F90
Structure of a class

3 Proposed model structure
Available prototype
Description of the main classes
Restructuring of the namelist input
What to do further

4 References



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Available prototype

Description of the prototype

A model framework prototype has been implemented (initially
planned for the VHREM project, it remained in my mind for almost a
year, then it has been written down during the last 4 weeks), the
current functionality is:

reads a minimal configuration (grid size, time step, nested grid
hierarchy)

can do time stepping with multiple nested grids

includes “dummy” dynamics and parallel environment modules

has an experimental model and variable table configuration
system

includes “hooks” for relaxation, grid interaction, physics,
assimilation, I/O



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Available prototype

Description of the prototype

A model framework prototype has been implemented (initially
planned for the VHREM project, it remained in my mind for almost a
year, then it has been written down during the last 4 weeks), the
current functionality is:

reads a minimal configuration (grid size, time step, nested grid
hierarchy)

can do time stepping with multiple nested grids

includes “dummy” dynamics and parallel environment modules

has an experimental model and variable table configuration
system

includes “hooks” for relaxation, grid interaction, physics,
assimilation, I/O



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Available prototype

Description of the prototype

A model framework prototype has been implemented (initially
planned for the VHREM project, it remained in my mind for almost a
year, then it has been written down during the last 4 weeks), the
current functionality is:

reads a minimal configuration (grid size, time step, nested grid
hierarchy)

can do time stepping with multiple nested grids

includes “dummy” dynamics and parallel environment modules

has an experimental model and variable table configuration
system

includes “hooks” for relaxation, grid interaction, physics,
assimilation, I/O



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Available prototype

Description of the prototype

A model framework prototype has been implemented (initially
planned for the VHREM project, it remained in my mind for almost a
year, then it has been written down during the last 4 weeks), the
current functionality is:

reads a minimal configuration (grid size, time step, nested grid
hierarchy)

can do time stepping with multiple nested grids

includes “dummy” dynamics and parallel environment modules

has an experimental model and variable table configuration
system

includes “hooks” for relaxation, grid interaction, physics,
assimilation, I/O



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Available prototype

Description of the prototype

A model framework prototype has been implemented (initially
planned for the VHREM project, it remained in my mind for almost a
year, then it has been written down during the last 4 weeks), the
current functionality is:

reads a minimal configuration (grid size, time step, nested grid
hierarchy)

can do time stepping with multiple nested grids

includes “dummy” dynamics and parallel environment modules

has an experimental model and variable table configuration
system

includes “hooks” for relaxation, grid interaction, physics,
assimilation, I/O



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Outline

1 A new model framework
Motivation

2 Object-oriented-like approach in F90
Structure of a class

3 Proposed model structure
Available prototype
Description of the main classes
Restructuring of the namelist input
What to do further

4 References



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Integration tree class

The main class which drives the integration process is called
integration_tree:

describes a full application of the “model operator” on a single
grid

carries pointers to objects of the same class describing parent
grid and child grid(s)

the “root” of the integration tree could be the driving model data
interpolated on the main computational grid (special case of
“non prognostic” integration_tree object)

the child of the root grid would then be the main “prognostic” grid

the child(ren) of the main computational grid may represent
nested grids and so on



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Scheme of the integration_tree grid hierarchy

integration_tree object

root grid
driving model

integration_tree object

nested grid 1.1
main model grid

integration_tree object

nested grid 1.1.1
nesting level 1

integration_tree object

nested grid 1.1.2
nesting level 1

integration_tree object

nested grid 1.1.3
nesting level 1

integration_tree object

nested grid 1.1.1.1

integration_tree object

nested grid 1.1.2.1
nesting level 2

integration_tree object

nested grid 1.1.2.2
nesting level 2

nesting level 2



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Integration tree class contents

The integration_tree class contains classes representing all the
numerical packages of the model: dynamics, physics (each
parameterization should reside in a separate subclass), assimilation,
chemistry, etc. + Input/Output

these classes are assumed independent one of each other, this
makes the management of the code easier but may restrict the
freedom in developing numerical modules

⇒ two classes (modules) cannot reference each other
(circular references forbidden in f90), so if two classes (e.g.
convection and turbulence parameterisation) have to share
some piece of code or data, this piece should be extracted
from the two classes and placed in a separated module
USE’d by both.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Integration tree class contents

The integration_tree class contains classes representing all the
numerical packages of the model: dynamics, physics (each
parameterization should reside in a separate subclass), assimilation,
chemistry, etc. + Input/Output

the classes (e.g. model grid, model variables, parallel computing
environment) that need to be accessed by most of the numerical
classes are grouped in a special class integration_common
contained by integration_tree



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Scheme of the integration_tree class

dyn_semi_impl class

dynamics class

dyn_runge_kutta class

dyn_leap_frog class

...

phy_radiation class

...

physics class

phy_turb class

phy_turb_k class

phy_turb_tke class

chemistry class

model_variable class parall_environ class

spacetime_grid class

spacetime_grid class

integration_common class

integration_tree class

USE relations

input_output class

assimilation class

USE relations
are indicated
with blue arrows;
every class in
the scheme also
makes USE of
the class(es)
immediately
contained in it
(not indicated
explicitely in the
scheme).⇒



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Management of model variables

In order to simplify the management of variables and variable tables,
the variables are handled by the model_variable class (contained
in integration_common class) with the following phases:



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Management of model variables

model_variable class reads the variable table from a file

all the numerical modules, after reading the configuration, make
a “reservation” for the variables they need (identifying them by
name), by calling a reserve method in model_variable
class, specifying e.g. whether the variable is prognostic, how it is
staggered, etc.

the alloc method of the model_variable class is called,
which does a sanity check and allocates the variables which
have been “reserved”

at the beginning of every time step, the numerical modules call
the get method of the model_variable class in order to get a
pointer to the variables/tendencies needed, at the required time
levels



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Management of model variables

model_variable class reads the variable table from a file

all the numerical modules, after reading the configuration, make
a “reservation” for the variables they need (identifying them by
name), by calling a reserve method in model_variable
class, specifying e.g. whether the variable is prognostic, how it is
staggered, etc.

the alloc method of the model_variable class is called,
which does a sanity check and allocates the variables which
have been “reserved”

at the beginning of every time step, the numerical modules call
the get method of the model_variable class in order to get a
pointer to the variables/tendencies needed, at the required time
levels



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Management of model variables

model_variable class reads the variable table from a file

all the numerical modules, after reading the configuration, make
a “reservation” for the variables they need (identifying them by
name), by calling a reserve method in model_variable
class, specifying e.g. whether the variable is prognostic, how it is
staggered, etc.

the alloc method of the model_variable class is called,
which does a sanity check and allocates the variables which
have been “reserved”

at the beginning of every time step, the numerical modules call
the get method of the model_variable class in order to get a
pointer to the variables/tendencies needed, at the required time
levels



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Management of model variables

model_variable class reads the variable table from a file

all the numerical modules, after reading the configuration, make
a “reservation” for the variables they need (identifying them by
name), by calling a reserve method in model_variable
class, specifying e.g. whether the variable is prognostic, how it is
staggered, etc.

the alloc method of the model_variable class is called,
which does a sanity check and allocates the variables which
have been “reserved”

at the beginning of every time step, the numerical modules call
the get method of the model_variable class in order to get a
pointer to the variables/tendencies needed, at the required time
levels



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Management of model variables

This way, adding a model variable is just a matter of inserting its
description in a configuration file and inserting the proper
“reservation” where the variable is needed
⇒ easier maintenance and more freedom for scientific developers.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Management of model variables

Another feature —planned but only partially implemented— is the
possibility to group different variables into a single one with an
additional dimension, in order to simplify the treatment of high
numbers of microphysical or chemical species, e.g. in the advection

Benefits from F2003
Procedure pointers to associate each diagnostic variable to the
corresponding method for its computation, may simplify the I/O
module.
Procedure pointers to associate prognostic variables to the method
for computing falling velocity field, may simplify the advection code.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Numerical computing classes

They should have the following methods:

init (constructor) which sets up the storage, reads the
configuration and makes the variable “reservation”

compute performs computation for a single timestep

other standardized methods could be added for performing
additional operations, like compute_tangent_linear,
compute_adjoint, checkpoint, restart...



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Numerical computing classes

numerical classes are in principle free to allocate their own
private arrays or other kind of data

these data should be placed in the instance storage (the main
TYPE definition) if they have to be conserved between calls and
have to be unique to each grid

they can either update the tendencies of the prognostic variables
or the variable themselves in a time-splitting manner



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Numerical computing classes - alternative schemes

If more than one numerical scheme is available for the dynamics or
for a physical parameterization, this could be implemented as a
driving class with pointers to the specific numerical classes, rather
than physical inclusion of them.
Only the pointer to the desired scheme/class will then be
ASSOCIATED(). See also the class scheme.

Benefits from F2003
“True” classes with type extension, polymorphism and bounded
procedures can help in avoiding code repetition and simplifying the
management of the alternative numerical schemes.



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Numerical computing classes - software
interoperability

if a more traditional programming approach is desired, where,
e.g., prognostic variables are to be called u, v, p, etc. and not
this%u, this%v, this%p, then the compute method can act
as a wrapper to a traditional routine whose parameters are all
the needed variables and configuration parameters

this would allow to call modules written according to the old
“Rules for interchange of physical parameterizations” (Kalnay et.
al), either including the old code in the module (better) or leaving
it as external routines



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Description of the main classes

Numerical computing classes - software
interoperability

if a more traditional programming approach is desired, where,
e.g., prognostic variables are to be called u, v, p, etc. and not
this%u, this%v, this%p, then the compute method can act
as a wrapper to a traditional routine whose parameters are all
the needed variables and configuration parameters

this would allow to call modules written according to the old
“Rules for interchange of physical parameterizations” (Kalnay et.
al), either including the old code in the module (better) or leaving
it as external routines



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Outline

1 A new model framework
Motivation

2 Object-oriented-like approach in F90
Structure of a class

3 Proposed model structure
Available prototype
Description of the main classes
Restructuring of the namelist input
What to do further

4 References



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Using xml files instead of namelists

The possibility to use xml files through a public domain, f90 package
to provide model run configuration has been investigated:

a special tool reads a description of the “namelist”, relative to a
single module/class, from an xml file and generates a f90
module source that can read the desired xml structure into a
proper f90 derived type

the description includes variable types, rank, dimensions
(fixed or allocatable runtime) and initial default value

the module/class needing configuration USEs the automatically
generated module and CALLs the corresponding reading
routines

if all the configuration for a module/class is contained in a single
derived type (without POINTER variables), it is simpler to
exchange it in parallel mode (this would be true for a namelist
too, but it is uncomfortable to read a derived type in a namelist)



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Using xml files instead of namelists

The possibility to use xml files through a public domain, f90 package
to provide model run configuration has been investigated:

a special tool reads a description of the “namelist”, relative to a
single module/class, from an xml file and generates a f90
module source that can read the desired xml structure into a
proper f90 derived type

the description includes variable types, rank, dimensions
(fixed or allocatable runtime) and initial default value

the module/class needing configuration USEs the automatically
generated module and CALLs the corresponding reading
routines

if all the configuration for a module/class is contained in a single
derived type (without POINTER variables), it is simpler to
exchange it in parallel mode (this would be true for a namelist
too, but it is uncomfortable to read a derived type in a namelist)



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Using xml files instead of namelists

The possibility to use xml files through a public domain, f90 package
to provide model run configuration has been investigated:

a special tool reads a description of the “namelist”, relative to a
single module/class, from an xml file and generates a f90
module source that can read the desired xml structure into a
proper f90 derived type

the description includes variable types, rank, dimensions
(fixed or allocatable runtime) and initial default value

the module/class needing configuration USEs the automatically
generated module and CALLs the corresponding reading
routines

if all the configuration for a module/class is contained in a single
derived type (without POINTER variables), it is simpler to
exchange it in parallel mode (this would be true for a namelist
too, but it is uncomfortable to read a derived type in a namelist)



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Using xml files instead of namelists

The possibility to use xml files through a public domain, f90 package
to provide model run configuration has been investigated:

a special tool reads a description of the “namelist”, relative to a
single module/class, from an xml file and generates a f90
module source that can read the desired xml structure into a
proper f90 derived type

the description includes variable types, rank, dimensions
(fixed or allocatable runtime) and initial default value

the module/class needing configuration USEs the automatically
generated module and CALLs the corresponding reading
routines

if all the configuration for a module/class is contained in a single
derived type (without POINTER variables), it is simpler to
exchange it in parallel mode (this would be true for a namelist
too, but it is uncomfortable to read a derived type in a namelist)



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Advantages and disadvantages

+ adding new configuration parameters requires less effort

+ variable-size arrays (allocated according to the input size)
allowed

+ xml may allow easier interfacing with other applications

- may be trickier in case of errors

- input files more verbose

- requires a change of habit by the users



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Advantages and disadvantages

+ adding new configuration parameters requires less effort

+ variable-size arrays (allocated according to the input size)
allowed

+ xml may allow easier interfacing with other applications

- may be trickier in case of errors

- input files more verbose

- requires a change of habit by the users



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Advantages and disadvantages

+ adding new configuration parameters requires less effort

+ variable-size arrays (allocated according to the input size)
allowed

+ xml may allow easier interfacing with other applications

- may be trickier in case of errors

- input files more verbose

- requires a change of habit by the users



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Advantages and disadvantages

+ adding new configuration parameters requires less effort

+ variable-size arrays (allocated according to the input size)
allowed

+ xml may allow easier interfacing with other applications

- may be trickier in case of errors

- input files more verbose

- requires a change of habit by the users



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Advantages and disadvantages

+ adding new configuration parameters requires less effort

+ variable-size arrays (allocated according to the input size)
allowed

+ xml may allow easier interfacing with other applications

- may be trickier in case of errors

- input files more verbose

- requires a change of habit by the users



A new model framework Object-oriented-like approach in F90 Proposed model structure References

Restructuring of the namelist input

Advantages and disadvantages

+ adding new configuration parameters requires less effort

+ variable-size arrays (allocated according to the input size)
allowed

+ xml may allow easier interfacing with other applications

- may be trickier in case of errors

- input files more verbose

- requires a change of habit by the users



A new model framework Object-oriented-like approach in F90 Proposed model structure References

What to do further

Outline

1 A new model framework
Motivation

2 Object-oriented-like approach in F90
Structure of a class

3 Proposed model structure
Available prototype
Description of the main classes
Restructuring of the namelist input
What to do further

4 References



A new model framework Object-oriented-like approach in F90 Proposed model structure References

What to do further

Need for new coding rules

an approach like the one described, especially in the absence of
a true O-O language like F2003, requires a preliminar
agreement about some strict standardization rules not covered
by the known “European standards for... tran 90 code”

the code to be developed should be “F2003-ready”, in order to
switch to the new syntax when the new compilers will be
available and popular enough

http://www.metoffice.com/research/nwp/numerical/fortran90/f90_standard


A new model framework Object-oriented-like approach in F90 Proposed model structure References

What to do further

Need for new coding rules

an approach like the one described, especially in the absence of
a true O-O language like F2003, requires a preliminar
agreement about some strict standardization rules not covered
by the known “European standards for... tran 90 code”

the code to be developed should be “F2003-ready”, in order to
switch to the new syntax when the new compilers will be
available and popular enough

http://www.metoffice.com/research/nwp/numerical/fortran90/f90_standard


A new model framework Object-oriented-like approach in F90 Proposed model structure References

What to do further

Continuing the development in COSMO

Comments and discussion

the prototype is available to COSMO (a demonstration can be
done on my Linux laptop here, compiled with gfortran)

suggestions and exchange of experience are welcome

does this work meet any of the needs or willings of
COSMO/DWD?

if so, how can we proceed?



A new model framework Object-oriented-like approach in F90 Proposed model structure References

What to do further

Continuing the development in COSMO

Comments and discussion

the prototype is available to COSMO (a demonstration can be
done on my Linux laptop here, compiled with gfortran)

suggestions and exchange of experience are welcome

does this work meet any of the needs or willings of
COSMO/DWD?

if so, how can we proceed?



A new model framework Object-oriented-like approach in F90 Proposed model structure References

What to do further

Continuing the development in COSMO

Comments and discussion

the prototype is available to COSMO (a demonstration can be
done on my Linux laptop here, compiled with gfortran)

suggestions and exchange of experience are welcome

does this work meet any of the needs or willings of
COSMO/DWD?

if so, how can we proceed?



A new model framework Object-oriented-like approach in F90 Proposed model structure References

What to do further

Continuing the development in COSMO

Comments and discussion

the prototype is available to COSMO (a demonstration can be
done on my Linux laptop here, compiled with gfortran)

suggestions and exchange of experience are welcome

does this work meet any of the needs or willings of
COSMO/DWD?

if so, how can we proceed?



A new model framework Object-oriented-like approach in F90 Proposed model structure References

References

Object Oriented programming in F90
http://www.cs.rpi.edu/~szymansk/oof90.html

J.E. Akin, Object-Oriented Programming Via F95, Cambridge
University Press, 2003
http://www.owlnet.rice.edu/~mech517/

XML Fortran web site (Arjen Markus, Delft Hydraulics)
http://xml-fortran.sourceforge.net/

Fortran standards committee http://j3-fortran.org/

Fortran 2003 draft specification (hurry up until it’s available)
http://www.dkuug.dk/jtc1/sc22/open/n3661.pdf

J. Reid, The new features of Fortran 2003 ftp:
//ftp.nag.co.uk/sc22wg5/N1601-N1650/N1648.pdf

http://www.cs.rpi.edu/~szymansk/oof90.html
http://www.owlnet.rice.edu/~mech517/
http://xml-fortran.sourceforge.net/
http://j3-fortran.org/
http://www.dkuug.dk/jtc1/sc22/open/n3661.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1648.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1648.pdf

	A new model framework
	Motivation

	Object-oriented-like approach in F90
	Structure of a class

	Proposed model structure
	Available prototype
	Description of the main classes
	Restructuring of the namelist input
	What to do further

	References

