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A spectral toy-model with time-differ ence scheme adopted
from the LM fast- mode part
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TheRadiative Upper Boundary Condition of Klemp - Durran - Bougeault
(KDB - RUBC)

Limiting assumptions for the validity of the KDB-RUBC :

- hydrostatic approximation m=0
- condition of incompressibility CC® ¥

- isothermal basic state

- no rotation f=0

- Boussinesq - approximation Tt st
Tz H H’

- reduced frequency equation w n=+ N k

|

Physical radiative condition
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lid-condition
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KDB-RUBC _ _
Process of dispersion from
defined initial perturbance of
potential temperature chosen asin
Bl e Arakawa und Konor (1996).
o Simulation over 48 h. Spectral
perturbation amplitude associated
riE-EC - to horizontal wavelength
— L =250km.
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Simulation experimentswith the fast-mode L M toy-model have shown that the

KDB-RUBC can beimplemented successfully in a nonhydrostatic compressible

model with the given semi-implicit time-scheme, from which vertically propagating
acoustic waves ar e effectively filtered out and horizontally propagating acoustic waves
are sufficiently suppressed dueto a diver gence damping appr oach.

W e have found out two equally successful methods how to implement theKDB-RUBC:

Method 1. A judiciousidea from D.R. Durran (1999) to incor poratethis RUBC in the
vertically implicit time-scheme. It isfunctioning with our toy-model, but
needs refor mulations of the given algorithm with lid-condition.

Method 2: A direct method, which is easily implemented without interventionsin the
given model algorithm and isindependent of a given time-scheme. It operates
satisfactory, too, and leadsto results equivalent to the Durran-method.

Further strategy : - stepwise generalisation in the LM-world
- first step —>» repetition of the given
experimental set-up for the toy-model
now with theLM



First experiment with the LM

1.
2.
3.
4,
5.
6.
1.

Horizontal integration domain: 84 x 84 gridpoints, D x=2.8km
Number of vertical layers: 35 ( ke= 35)
Double-periodic continuation in the horizontal ( Iperi=.true.)
Slow tendencies ar e set equal to zero in subroutine fast_ waves
Physics and Rayleigh-damping deleted
| sother mal basic state (polytropic state also possible)
Definition of initial state - u=v=w=p‘=0

- temperaturedisturbance

&2

T¢'=A"sn N =84

A<=20 =-0.5K, A<=21 = +0.5K
n=2,4,..(L =112,56,...km)

8. Application of KDB-RUBC after Method 2, now including discrete
Fourier-transform and itsinver se operation, with
adaptation to the C-grid staggering. ( We failed with Method 1! )



The KDB -RUBC - operations

1 ptf)p be extrapolated hydrostatically from k=1to k‘=1

2. Fourier-transform ( ﬁﬁ,, )top:: FT( p|(,j )top

k¢ +I¢
3. KDB-RUBC: (W, o _\(/Nr) (P% ),

2sin(k-2-) 2sin(|£—)
mit k= N~ | ¢= i, ki'|O,N, -1], I [O,Nj -1]
a cosj ,DlI aD;j

4. InverseFourier - transform (W N )top = FT_l(V’Vk,I )top
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Pressure gradient term error test with LMK
for isothermal atmosphere at rest with bell-shaped mountain
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a/H = 6Ds/1000m , Ds=2.8km



Summary and outlook for further work

On principle, we were able to show that the KDB-RUBC

iIsapplicablein a model-typelikethe LM, and it worksin

theright way.

What followsisa straightforward engineering work

Diverse generalisations of experimentation

towardsreal cases...

Replacing FT by FFT

I ntroducing an aperiodic integration domain

Taking advantage from experienceswith DM / SM / HRM

Co-operation with MeteoSwiss: real-case - studies and
optimisation !



Further investigations concerning CP - grid advantages
versusL - grid shortcomings

by

Hans-Joachim Herzog , DWD , Potsdam

A report about isunfortunately not possible here,
but a COSMO Technical Report is being prepared instead.
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