Latent Heat Nudging in aLMo:

Experiments with Idealized Supercell Simulations

Daniel Leuenberger and Andrea Rossa

MeteoSwiss

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Talk Outline

- Introduction
- Supercell Storms
 - Characteristics
 - Reference simulation
- OSSE with Latent Heat Nudging
 - Sensitivity to observation insertion frequency
 - Sensitivity to environmental humidity
 - Sensitivity to horizontal grid spacing
- Findings
- Outlook

Introduction: Latent Heat Nudging

- Radar information is gaining importance in mesoscale data assimilation.
- LHN: Assimilation method for precipitation information.
- Trigger model precipitation where Radar detects precipitation (heating), supress it elsewhere (cooling).
- Scale model latent heating profiles by an amount derived from observed and model precipitation.

Introduction: OSSE

- Observing System Simulation Experiment (OSSE)
 - Suited to investigate the performance of assimilation schemes
 - Gain insight in LHN
 - Reference simulation provides "ideal, artificial observations"
- Simulation of idealized supercell storm
 - Simple environment
 - Coherent, long-lived, organized system
 - Well documented in literature

Radar in aLMo

Supercell Storm: Characteristics

- Long-lived thunderstorm with two strong rotating updrafts
- Develops in moderate to strong windshear and is largely driven by vorticity dynamics
- Effective separation of warm moist inflow and cold downdraft enables long life (up to several hours)
- Severe, long-lived hail-storms often exhibit supercell characteristics

Supercell Simulations

- Idealized environment
 - Large amount of CAPE (~1200 J/kg
)
 - One-directional wind shear
 - Horizontally homogeneous
- Model configuration
 - $\Delta x = 1$ km, $\Delta t = 5$ s
 - Parametrizations:
 - Grid-scale one-category ice scheme
 - Default turbulence parametrization
 - New 2 TL scheme
 - Doubled explicit horizontal diffusion (aks4 = 2.05 10⁻³)

Swiss Federal Institute of Technology Zurich

Supercell Simulations

 Comparison of reference run with results from a cloudresolving research model

LM Reference run

KAMM2 (A. Seifert)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Daniel.Leuenberger@MeteoSwiss.ch COSMO Meeting, 24.September 2003

 \mathbf{O}

Supercell Simulations

- Reference run
 - Supercell initiated with warm bubble
 - Model rain serves as "artificial radar observations"
- LHN Analysis
 - Same environment as reference run
 - No warm bubble initiation
 - LHN during 3h (artificial rain rates from reference run)
- LHN Forecast
 - LHN during first 30, 60, 90, 120, 150 min
 - Free run afterwards

Radar in aLMo Insertion Frequency of Precipitation Input

- LHN linearly interpolates between subsequent observations
- Examine relevance of insertion frequency \(\Delta t\) to LHN Analysis Inear interpolation

24.September 2003

COSMO Meeting,

 $\mathbf{D}t = 4\min$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LHN Analysis (LHN during 3h)

1196-180 2-13

 $\mathbf{D}t = 1 \min$

24.September 2003 Daniel.Leuenberger @ MeteoSwiss.ch COSMO Meeting, 24.September 2000

MeteoSwiss

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

COSMO Meeting, 24.September 2003 Daniel.Leuenberger@MeteoSwiss.ch

MeteoSwiss

LHN Analysis

CTRL T = 10min T = 6min T = 4min T = 2minT = 1min

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MeteoSwiss

Radar in aLMo

Daniel.Leuenberger @ MeteoSwiss.ch COSMO Meeting, 24.September 2003

LHN Forecast (Dt = 1min)

Free forecast after 1h

Analysis (LHN during 3h)

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Daniel.Leuenberger @ MeteoSwiss.ch COSMO Meeting, 24.September 2003

Sensitivity Experiments

- Frequent problem in assimilation of convection at small scales: Rapid loss of assimilated information in free forecast
- Try to find factors contributing to this problem: What could cause the storm to ,die' too quickly in the free forecast?
- Sensitivity to low level humidity of environment
- Sensitivity to grid spacing

Low-level humidity

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

24.September 2003

COSMO Meeting,

Horizontal grid spacing

- Interpolation of 1km forcing to 2km and 5km mesh •
- Perform LHN runs with coarse mesh •

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MeteoSwiss

Radar in aLMo

Free forecast after 1h

Horizontal grid spacing

Analysis (LHN during 3h)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Findings

- Simulation of an idealized, long-lived, meso- γ convective system, showing similarities with results from literature
- LHN capable of analysing and initiating supercell storm
- High insertion frequency important in this case
- Low level humidity essential for storm development
- Even a poorly resolved forcing is able to initiate and maintain storm evolution
- Supercell storm very stable dynamics: are findings ,portable' to other situations?

Outlook

- Real-case study
 - Reduction of grid-size to 2km
 - More cases
- Idealized OSSE
 - Sensitivity of vertical forcing distribution
 - Assimilation of ideal 3D latent heating fields
 - Assimilation of horizontal winds
 - Consider case which is less driven by dynamics (initialize environment with real sounding data)

Radar in aLMo

Thank you for your attention ! $\stackrel{\circ}{\leftarrow}$

Daniel.Leuenberger@MeteoSwiss.ch COSMO Meeting, 24.September 2003

EID Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Different Forcing (at t = 110 min)

Radar in aLMo

Color: ΔT_{LHN}

Black contours: $RR_{rad} - RR_{mo}$

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Supercell Storm: Conceptual Model

Initial stage

Splitting stage

from Klemp (1987)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LHN Forecast: Cumulated surface rain

22

Daniel.Leuenberger @ MeteoSwiss.ch COSMO Meeting, 24.September 2003

Insertion Frequency of LHN Input

Sampling intervals of rain rates (insertion frequency of observations)

$$R(t) = \int_{t_0}^{t} RR(t) dt$$

$$R(t) = \frac{dR(t)}{dt}$$

$$R(t) = \frac{dR(t)}{dt}$$

$$R(t) = \frac{dR(t)}{dt}$$

• Mean rain rate from $t - \Delta t$ to t:

$$\overline{RR}(t,\Delta t) = \frac{\Delta R}{\Delta t} = \frac{R(t) - R(t - \Delta t)}{\Delta t} \qquad \lim_{\Delta t \to 0} \overline{R}$$

$$\lim_{\Delta t \to 0} \overline{RR}(t, \Delta t) = RR(t)$$

Swiss Federal Institute of Technology Zurich

t

- Linear interpolation between successive rain rates in LHN
- LHN Experiments with $\Delta t = 10, 6, 4, 2, 1 \text{ min}$

LHN Temperature Increments

Temperature increment:

Analysed rain rate:

Observation weight:

$$\Delta T_{LHN} = (f - 1) \cdot \Delta T_{LH_{mod}}, \quad f = \frac{RR_{ana}}{RR_{mo}}$$

$$RR_{ana} = w \cdot RR_{rad} + (1 - w) \cdot RR_{mo}$$

$$w = w(x, y, t) \qquad w \in [0,1]$$

		Scaling factor f	Profile to scale	
Model fair $1/a_{down}$	$\leq \frac{RR_{ana}}{RR_{mo}} \leq \boldsymbol{a}_{up}$	$rac{RR_{_{ana}}}{RR_{_{mo}}}$	local profile	
Model too wet	$\frac{RR_{_{ana}}}{RR_{_{mo}}} \le 1/a_{_{down}}$	1/ a _{down}	local profile	leteoSwiss.ch sptember 200
Model too dry	$\frac{RR_{ana}}{RR_{mo}} \geq \boldsymbol{a}_{up}$	$\frac{RR_{_{ana}}}{RR_{_{near/ideal}}}$	near / ideal. profile	lenberger@M leeting, 24.St
		Eidgenössische Technische Swiss Federal Institute of Te	Hochschule Zürich	Daniel.Leu COSMO N

Nudging Increment

Add nudging increment to prognostic temperature equation:

 $\frac{\Delta T}{M} = Model + \frac{\Delta T}{M}$ LHN

Findings

- aLMo is able to assimilate radar observations
- Good impact in analysis, sfc winds in line with observations.
- Some impact in forecast up to 03h
- aLMo loses information quickly, i.e. storm dies too early
- Why does LHN forecast so rapidly lose radar information?
 - LHN-Scheme (wrong circulation)?
 - Model resolution ?
 - Environment (humidity) ?

Radar in aLMo

