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The parameterisation of subgrid-scale turbulent processes is of particular meaning for high-resolved model simulations intended to be performed with the LLM. The need directly follows from the specific model features of the LITFASS-LM like it is named explicitly. LITFASS is the name of a former DWD project launched for studying the turbulent processes in the lower atmosphere in detail. Because such a subgrid-scale model was not available from the LM system, we had to do an extra development. In this way, the LLM is based on the well-known non-hydrostatic and compressible LM-equations now applied to the micro-scale by some specific modifications (e.g. the boundary technique). Furthermore, the LLM is not nested into a coarser NWP-model but directly driven by time-dependent measured vertical profiles of wind, temperature and humidity, whereas the inhomogeneous model forcing from the underlying surface includes above all ground-based network data of radiation and precipitation. According to our experiments, the LLM runs for a great variety of stable and convective weather situations. The model permits to determine area-averaged vertical profiles of turbulent fluxes of momentum, sensible and latent heat. The aim is to do this in future with such an accuracy that they can serve as reliable values for physical validation studies of the LM and to derive special relationships needed within the LM turbulence parameterisation. 
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The model area is placed in the Southeast of Berlin being representative for the natural landscape of Central Europe with pine forests, lakes, some hills and flat, agriculturally used terrains. With a size of 14x14 km2 the model area encloses the location of the Lindenberg Observatory and various measurement sites. It can be enlarged optionally up to about 20x20 km² This model area is now subdivided into a fine net of 
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small grid boxes of about 100x100 m². The denoted domain in the centre indicates the chosen LM-grid box to which the model intercomparisons between LM and LLM are referred. 

The right figure shows the vertical discretization: The upper model boundary is assumed at 3000m. The model atmosphere is subdivided into 39 layers, where the layers nearest to the surface are very thin. Their thickness enlarges from 4 m near the surface to up to 150 m at the model top. In this way, the aspect ratio as the ratio of vertical to horizontal grid length increases gradually upward in the range between .04 and 1.5; in other words: the form of the grid boxes changes from a pancake-like to a rather pencil-like type. 

This high model resolution clearly demonstrates the need to include the horizontal turbulent fluxes especially over inhomogeneous terrain how it is done by the present scheme but its implementation is a rather complex work. On the one hand the physical concept has to be formulated proposing how to parameterise the subgrid turbulent processes according to the scale resolution. One the other hand the scheme should consistently be imbedded into the numerical framework of the LM with special respect e.g. to the horizontal C-grid, the vertical Lorentz-grid and the Crank-Nicholson time scheme. 

As starting point the relevant fragments of the LLM equations for the 3 velocity components, temperature and moisture may be written in the convenient tensor notation as 
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showing directly the turbulent flux components with ui = (u, v, w) and (X1, X2) = (T, qk). ij (i,j = 1,2,3) are the 6 independent components of momentum, whereas 
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 denote the 3 components of sensible and latent heat flux, respectively. They are specified by use of a first-order closure through a local gradient and a local turbulent diffusion coefficient.
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Km refers to momentum and Kh to the sensible heat and moisture flux. ( is the air density, 
[image: image4.wmf]v

Q

 the virtual potential temperature,  the Exner function and cpd the specific heat at constant pressure.)

The problem is how to determine both diffusion coefficients. Following the well-known empirical Prandtl-Kolmogorov specification they can be expressed as functions of the turbulent kinetic energy (TKE)


[image: image5.wmf](

)

'

'

2

1

i

i

u

u

e

=

     ,

of a length scale  and the thermal stability as 
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Whereas  is closely related to the grid spacing, the influence of stability has still to be determined.

In order to get the TKE we introduced a prognostic equation which is solved in the LM-module slow-tendencies.f90. Here, I already present its well-known parameterised formulation found by use of some approximations, hypotheses and a further 'flux-gradient' specification according to Stull (see Herzog et al., COSMO Technical Report No. 4 (2002), www.cosmo-model.org/cosmoPublic/technicalReports.htm) 
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The various terms are (from the left): the advection, the buoyant production and the shear production. The terms describing the turbulent transport of TKE and the pressure correlation have been unified to the turbulent diffusion term. The last term represents the dissipation. Consequently, this equation has to be solved for the three space dimensions, too. Therefore, S stands for the 3D-deformation. N is the Brunt-Väisälä frequency. 

In order to determine the stability functions it is helpful to consider the equilibrium limit. (that means: the sum of buoyant production term, shear production term and dissipation term is equal to zero). In this diagnostic case a simple solution for the TKE can be found 
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but still depending on the unknown m. and Pr. The local Richardson number Ri is given by the squared quotient of the Brunt-Väisäla-frequency and the deformation. 

In the following step we take advantage of the the Smagorinski SGS model updated by Mason and Brown (see Herzog et al.) because it is based on the equilibrium limit of the TKE equation, too. Here, the diffusion coefficients
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are approached by the stability functions Fm and Fh loosely derived from the 'Kansas data'.

The length scale 
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 and the deformation S are identical again with that in the Prandtl-Kolmogorov approach. The grid scale length 
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 is assumed to be a function of the dimension of a grid box multiplied by a correction factor which takes account the grid anisotropy after Scotti et al. (see Herzog et al.) 
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Using the fact the general Prandtl-Kolmogorov specification has to be valid in the equilibrium limit, too; both specifications of Km and Kh then coincide. Inserting the equilibrium TKE-solution into the resulting identity 
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m can be determined because
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is likewise known as quotient of both Smagorinski stability functions. In this way, h can be found, too. 

In conclusion we think this approach ensures a flexible ratio between turbulent momentum, heat and moisture fluxes varying between 0.4 and 1 (equivalent to
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). Although – strictly speaking – only valid in the equilibrium case, it should be more realistic than a constant Pr-number often used in the literature.
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Position of LLM integration area laid over a grid net twice the mesh width and underlying orography. The whole area corresponds to the extended model area. The black line indicates the standard  area (14 x 14 km² ), the dashed line the LM grid box (7 x 7 km²) and the cross the mass point. 



Vertical LLM structure (39 layers) 
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