
COSMO coding style
and Development

Workflow

Carlos Osuna, Meteoswiss
carlos.osuna@meteoswiss.ch

January 26, 2016

Code Modular design vs Flat Explicit
Code

COSMO coding style tends to write explicit code in flat files/modules
for all functionality.
Few new components in the last releases of COSMO change this
paradigm towards a more modular design

2 / 14

Example from LBC

IF(my_cart_neigh(3) = −1) THEN
DO k=1, ke

DO j=1, je
DO i=iendu, ie−1

u (i,j,k,nnew) = z1 ∗ u_bd (i,j,k,nbd1) +
z2 ∗ u_bd (i,j,k,nbd2)

ENDDO
ENDDO

ENDDODO
ENDIF
IF(my_cart_neigh(3) = −1) THEN

DO k=1, ke
DO j=1, je

DO i=1, istartu
u (i,j,k,nnew) = z1 ∗ u_bd (i,j,k,nbd1) +

z2 ∗ u_bd (i,j,k,nbd2)
ENDDO

ENDDO
ENDDO

ENDIF

3 / 14

Example from LBC

Refactored lbc, functionality in one sub call, API self-explanatory.

call lbc_upoint(BCType_Interpolate, u(:,:,:, nnew), &
BCFieldType_VectorI, 3, doEW=.True. , doNS = .False. , &
doCorners = .True., bd1=u_bd(:,:,:,nbd1), bd2=u_bd(:,:,:,nbd2))

4 / 14

Modular Design

Modularity 6= use Fortran modules.
Think in terms of library/functionality.

Recent examples: tracer module, mpe_io, gcl, lbc, proposal for
exch_boundaries, block module.

5 / 14

Advantages of modular design

Readability:

6 / 14

Advantages of modular design

Readability:
1 API/doc tells what the code in the call is doing

call lbc_masspoint(BCType_Copy, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners, src=src(:,:,1))
call lbc_masspoint(BCType_ZeroGradient, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners)

2 grep lbc * (to find all BC in COSMO)
3 Simplify by not exposing code complexity

7 / 14

Advantages of modular design

Readability:
1 API tells what the code in the call is doing

call lbc_masspoint(BCType_Copy, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners, src=src(:,:,1))
call lbc_masspoint(BCType_ZeroGradient, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners)

2 grep lbc * (to find all BC in COSMO)
3 Simplify by not exposing code complexity

Testability

8 / 14

Advantages of modular design

Readability:
1 API tells what the code in the call is doing

call lbc_masspoint(BCType_Copy, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners, src=src(:,:,1))
call lbc_masspoint(BCType_ZeroGradient, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners)

2 grep lbc * (to find all BC in COSMO)
3 Simplify by not exposing code complexity

Testability
1 Independent functionality that can be tested: e.g. test_src_lbc.f90,

metadata of traces,...

9 / 14

Advantages of modular design

Readability:
1 API tells what the code in the call is doing

call lbc_masspoint(BCType_Copy, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners, src=src(:,:,1))
call lbc_masspoint(BCType_ZeroGradient, fexp(:,:,1), BCFieldType_Scalar, nlines, &
doEW, doNS, doCorners)

2 grep lbc * (to find all BC in COSMO)
3 Simplify by not exposing code complexity

Testability
1 Independent functionality that can be tested: e.g. test_src_lbc.f90,

metadata of traces,...
Code safety

1 less code redundancy -> less bugs
2 explicit code spreads bugs all over the place.

10 / 14

A must

Modular/Library design makes it easier to use, but require trust:
1 Comprehensive testing (see Pascal’s talk).
2 Expert code owner per functionality.

11 / 14

Design code functionalities

Number of people involved in COSMO developments is growing (from
multiple institutes)...
How to coordinate/review new functionalities?

Traditional approach

12 / 14

Design code functionalities

How to coordinate/review new functionalities?

Sometimes

13 / 14

Design code functionalities

How to coordinate/review new functionalities?

Ideally

14 / 14

