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About me

• Maintainer of the C++ Dynamical Core 

• Successor of Andrea Arteaga 

• Primarily work at MeteoSwiss 

• POMPA project contributor
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Why?
• Development process has grown organically 

• Developing against multiple architectures creates overhead 

• Goal 

• Decrease developer friction 

• Reduce the number of introduced bugs 

• Make the development process more open: Students, industry, 
external collaborators
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Overview

• Source code management 

• Development process 

• Testing and code validation
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Source code management
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Git - All the way
• SVN 

• Need access to a server 

• Cumbersome with a lot of users 

• Difficult to move code and features around 

• Git 

• Easy to branch and merge code 

• Lots and lots of free tools available that make life easier 

• Entire history can be stored locally and moved around 

• Flexible workflows
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Definitions
• Commit: A changeset 

• Tree: A set of commits forming a parent child relationship 

• Repository: Contains the git tree 

• Branch: A dynamic pointer to a commit (similar to SVN) 

• Tag: A static pointer to a commit (similar to SVN) 

• Clone: To copy of a repository to your workspace
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Migration to git
• Finished since December 2015 

• Relatively painless  

• Git and SVN share the same concepts 

• Users needed only one tutorial to get started 

• No vendor lock-in
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New team member!



Pascal Spörri C2SM 10

Github for source code management

• Facilitates easier collaboration between MeteoSwiss and external 
partners 

• Popular with a lot of companies and the OpenSource community 

• Easy to use web interface to browse code and commits 

• Encourages an interactive style of software development
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Github Definitions

• Fork: A copy of a repository from one Github account to another 

• Pull-Request: An interactive tool for reviewing code and merging 
branches automatically
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Setup on Github
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Source Code Management
• MeteoSwiss maintains its own fork (copies) 

• Facilitate internal development 

• Prepare releases for production 

• Regular releases with production code to 
base repositories 

• Great for collaboration: Easy to migrate 
changes
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Issue Tracking

• Track Issues 

• Make feature requests visible 

• Plan releases
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Releases
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Development Workflow
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1.Developer creates a fork of $REPO on Github 

2.Developer creates a $FEATUREBRANCH 

3.Developer opens a pull-request on Github to reintegrate $FEATUREBRANCH 

4.Code review/verification 

1.Code Owner reviews code 

2.Automatic testing with Jenkins 

3.Developer fixes the issues reported by Code Owner and Jenkins 

5.The code is merged into the master

18

Developer Workflow
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A typical pull 
request
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Benefits of the Pull-Request Workflow
• Less code breakages  

• The code is tested automatically, reduces friction with developer 

• Developer is responsible to adapt his changes to the code base 

• Smaller change sets 

• High developer interaction 

• Each developer works on his own clone of the repository
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Testing and Validation
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Jenkins

• Jenkins instance running at CSCS 

• Daily builds of the latest version at 
$repository/master 

• Daily tests of the build version
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Test Matrix
• Target machines 

• Piz Daint (Research, Fall-Back) 

• Piz Lema/Albis (Production) 

• Piz Kesch/Es-Cha (Next-Gen) 

• Single and Double Precision 

• GPU and CPU testing
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Testsuite
• Executed as a shell script 

• 38 test cases 

• Split into cosmo1, cosmo2, cosmo7, flake, kenda, pollen 

• Prerlease 

• DWD tests 

• Results are validated against reference run 

• Mitigate development errors 

• Need to be recomputed when results are changed
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C++ Dynamical Core unit testing
• Special COSMO serialize build is created 

  !$ser savepoint VerticalDiffusionUnittest.PrepareStep-in LargeTimeStep=ntstep 

  !$ser data u_nnow=u(:,:,:,nnow) v_nnow=v(:,:,:,nnow)     

• Serialize build is run against test case  

• Generates serialize data of specified fields at each tag 

• Typically 10 time steps 

• Each component is tested individually (40 test cases)
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Performance Testing

• Small test runs that 
represent our operational 
configuration 

• Detect performance 
regressions 

• Observe a lot of 
fluctuations depending 
on the utilization
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Validation for the Future
• Currently not sufficient 

• Components often require expert knowledge to validate 

• Automation needed 

• Testsuite not sufficient for correctness 

• Testing values in production good for safety but bad for cycles 

• Reductions are expensive on GPUs 

• First experiments with analytic tests
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New tool for testing
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Serialbox
• Serialization framework originally developed for the C++ Dycore 

• Developed by MeteoSwiss APND 

• Serialize and deserialize Fortran, STELLA, Python Numpy fields 

• OpenSource, BSD Clause 2 License 

• Available on Github: https://github.com/C2SM-RCM/serialbox
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Definitions and Use Cases

• Purpose: Write and read fields from and to the disk at any point in 
time 

• Usefulness 

• Testing 

• Validation of small components
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Producer
PROGRAM serialbox_producer

  IMPLICIT NONE

  REAL, DIMENSION(5,5,5) :: a

  a = 5.0

  PRINT *, 'Serialize with sum(a)=', sum(a)

  !$ser init directory='.' prefix='SerialboxTest'
  !$ser savepoint sp1
  !$ser mode write
  !$ser data a=a

END PROGRAM serialbox_producer
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Consumer
PROGRAM serialbox_consumer

  IMPLICIT NONE

  REAL, DIMENSION(5,5,5) :: a

  a = 0.0

  !$ser init directory='.' prefix_ref='SerialboxTest'
  !$ser savepoint sp1
  !$ser mode read
  !$ser data a=a

  PRINT*,'After read from serializer: sum(a)=', sum(a)

END PROGRAM serialbox_consumer

Mixed Read/Write is also possible
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Python
from serialbox import *
ser = Serializer('.', 'SerialboxTest')
print(ser)
# { 'sp1' = [...] }
print(ser['sp1']['a'])
# array([[[ 5.,  5.,  5.,  5.,  5.],
#         [ 5.,  5.,  5.,  5.,  5.],
#         [ 5.,  5.,  5.,  5.,  5.],
#         [ 5.,  5.,  5.,  5.,  5.],
#         [ 5.,  5.,  5.,  5.,  5.]], ... , dtype=float32)
Visualizer(ser['sp1']['a'], 'SerialboxTest - a')
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Visualizer Demo
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Usage sample
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COSMO

!$ser savepoint AdvectionPDBottUnittest.DoTracers-in LargeTimeStep=ntstep
!$ser data u=u(:,:,:,nnew) u_nnow=u(:,:,:,nnow)                                  &
!$ser&     v=v(:,:,:,nnew) v_nnow=v(:,:,:,nnow)                                  &
!$ser&     w=w(:,:,:,nnew) w_nnow=w(:,:,:,nnow)                                  &
!$ser&     rho=rho(:,:,:)
!$ser tracer %all@nnow
CALL advection_pd(u_half(:,:,:), v_half(:,:,:), w_half(:,:,:), nnow, dt, &
                  im, ip, j2dim, ny_2dim)
!$ser savepoint AdvectionPDBottUnittest.DoTracers-out LargeTimeStep=ntstep
!$ser data rho=rho
!$ser tracer %all@nnew

Metainformation
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Conventions
• The name determines the unit test and the function 

• AdvectionPDBottUnittest — The unit test 

• DoTracers — The function 

• The -in and -out postfix determines unit test in/output 

• The meta information stores the current iteration
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C++ Dycore unit tests
TEST_F(AdvectionPDBottUnittest, DoTracers)
{
   

    for(int i = 0; i < iterations; ++i)
    {

    }
}

Specify input data

Specify reference data

Call Advection PD

Verify Result
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Direct error visualization

Most likely a problem with the  
boundary conditions
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Status
• Support for COSMO fields 

• Floating point precision agnostic 

• Fortran module support: Work in progress 

• Unit tests: Work in progress 

• Documentation: Planned
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Questions?
Git: 

https://wiki.c2sm.ethz.ch/C2SM/Git 

Serialbox: 
https://github.com/C2SM-RCM/serialbox 

Source: xkcd.com/1597

https://wiki.c2sm.ethz.ch/C2SM/Git
https://github.com/C2SM-RCM/serialbox
http://xkcd.com/1597

