
COSMO Development at MeteoSwiss
Pascal Spörri
pascal.spoerri@env.ethz.ch

Pascal Spörri C2SM 2

About me

• Maintainer of the C++ Dynamical Core

• Successor of Andrea Arteaga

• Primarily work at MeteoSwiss

• POMPA project contributor

Pascal Spörri C2SM 3

Why?
• Development process has grown organically

• Developing against multiple architectures creates overhead

• Goal

• Decrease developer friction

• Reduce the number of introduced bugs

• Make the development process more open: Students, industry,
external collaborators

Pascal Spörri C2SM 4

Overview

• Source code management

• Development process

• Testing and code validation

Pascal Spörri C2SM 5

Source code management

Pascal Spörri C2SM 6

Git - All the way
• SVN

• Need access to a server

• Cumbersome with a lot of users

• Difficult to move code and features around

• Git

• Easy to branch and merge code

• Lots and lots of free tools available that make life easier

• Entire history can be stored locally and moved around

• Flexible workflows

Pascal Spörri C2SM 7

Definitions
• Commit: A changeset

• Tree: A set of commits forming a parent child relationship

• Repository: Contains the git tree

• Branch: A dynamic pointer to a commit (similar to SVN)

• Tag: A static pointer to a commit (similar to SVN)

• Clone: To copy of a repository to your workspace

Pascal Spörri C2SM 8

Migration to git
• Finished since December 2015

• Relatively painless

• Git and SVN share the same concepts

• Users needed only one tutorial to get started

• No vendor lock-in

Pascal Spörri C2SM 9

New team member!

Pascal Spörri C2SM 10

Github for source code management

• Facilitates easier collaboration between MeteoSwiss and external
partners

• Popular with a lot of companies and the OpenSource community

• Easy to use web interface to browse code and commits

• Encourages an interactive style of software development

Pascal Spörri C2SM 11

Github Definitions

• Fork: A copy of a repository from one Github account to another

• Pull-Request: An interactive tool for reviewing code and merging
branches automatically

Pascal Spörri C2SM

Setup on Github

12

Pascal Spörri C2SM 14

Source Code Management
• MeteoSwiss maintains its own fork (copies)

• Facilitate internal development

• Prepare releases for production

• Regular releases with production code to
base repositories

• Great for collaboration: Easy to migrate
changes

Pascal Spörri C2SM 15

Issue Tracking

• Track Issues

• Make feature requests visible

• Plan releases

Pascal Spörri C2SM 16

Releases

Pascal Spörri C2SM 17

Development Workflow

Pascal Spörri C2SM

1.Developer creates a fork of $REPO on Github

2.Developer creates a $FEATUREBRANCH

3.Developer opens a pull-request on Github to reintegrate $FEATUREBRANCH

4.Code review/verification

1.Code Owner reviews code

2.Automatic testing with Jenkins

3.Developer fixes the issues reported by Code Owner and Jenkins

5.The code is merged into the master

18

Developer Workflow

Pascal Spörri C2SM 19

A typical pull
request

Pascal Spörri C2SM 20

Benefits of the Pull-Request Workflow
• Less code breakages

• The code is tested automatically, reduces friction with developer

• Developer is responsible to adapt his changes to the code base

• Smaller change sets

• High developer interaction

• Each developer works on his own clone of the repository

Pascal Spörri C2SM 21

Testing and Validation

Pascal Spörri C2SM 22

Jenkins

• Jenkins instance running at CSCS

• Daily builds of the latest version at
$repository/master

• Daily tests of the build version

Pascal Spörri C2SM 23

Test Matrix
• Target machines

• Piz Daint (Research, Fall-Back)

• Piz Lema/Albis (Production)

• Piz Kesch/Es-Cha (Next-Gen)

• Single and Double Precision

• GPU and CPU testing

Pascal Spörri C2SM 24

Testsuite
• Executed as a shell script

• 38 test cases

• Split into cosmo1, cosmo2, cosmo7, flake, kenda, pollen

• Prerlease

• DWD tests

• Results are validated against reference run

• Mitigate development errors

• Need to be recomputed when results are changed

Pascal Spörri C2SM 25

C++ Dynamical Core unit testing
• Special COSMO serialize build is created

 !$ser savepoint VerticalDiffusionUnittest.PrepareStep-in LargeTimeStep=ntstep

 !$ser data u_nnow=u(:,:,:,nnow) v_nnow=v(:,:,:,nnow)

• Serialize build is run against test case

• Generates serialize data of specified fields at each tag

• Typically 10 time steps

• Each component is tested individually (40 test cases)

Pascal Spörri C2SM 26

Performance Testing

• Small test runs that
represent our operational
configuration

• Detect performance
regressions

• Observe a lot of
fluctuations depending
on the utilization

Pascal Spörri C2SM 27

Validation for the Future
• Currently not sufficient

• Components often require expert knowledge to validate

• Automation needed

• Testsuite not sufficient for correctness

• Testing values in production good for safety but bad for cycles

• Reductions are expensive on GPUs

• First experiments with analytic tests

Pascal Spörri C2SM

New tool for testing

28

Serialbox
Pascal Spörri
pascal.spoerri@env.ethz.ch

Pascal Spörri C2SM 30

Serialbox
• Serialization framework originally developed for the C++ Dycore

• Developed by MeteoSwiss APND

• Serialize and deserialize Fortran, STELLA, Python Numpy fields

• OpenSource, BSD Clause 2 License

• Available on Github: https://github.com/C2SM-RCM/serialbox

Pascal Spörri C2SM 31

Definitions and Use Cases

• Purpose: Write and read fields from and to the disk at any point in
time

• Usefulness

• Testing

• Validation of small components

Pascal Spörri C2SM 32

Producer
PROGRAM serialbox_producer

 IMPLICIT NONE

 REAL, DIMENSION(5,5,5) :: a

 a = 5.0

 PRINT *, 'Serialize with sum(a)=', sum(a)

 !$ser init directory='.' prefix='SerialboxTest'
 !$ser savepoint sp1
 !$ser mode write
 !$ser data a=a

END PROGRAM serialbox_producer

Pascal Spörri C2SM 33

Consumer
PROGRAM serialbox_consumer

 IMPLICIT NONE

 REAL, DIMENSION(5,5,5) :: a

 a = 0.0

 !$ser init directory='.' prefix_ref='SerialboxTest'
 !$ser savepoint sp1
 !$ser mode read
 !$ser data a=a

 PRINT*,'After read from serializer: sum(a)=', sum(a)

END PROGRAM serialbox_consumer

Mixed Read/Write is also possible

Pascal Spörri C2SM 34

Python
from serialbox import *
ser = Serializer('.', 'SerialboxTest')
print(ser)
{ 'sp1' = [...] }
print(ser['sp1']['a'])
array([[[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.]], ... , dtype=float32)
Visualizer(ser['sp1']['a'], 'SerialboxTest - a')

Pascal Spörri C2SM 35

Visualizer Demo

Pascal Spörri C2SM

Usage sample

36

Pascal Spörri C2SM 37

COSMO

!$ser savepoint AdvectionPDBottUnittest.DoTracers-in LargeTimeStep=ntstep
!$ser data u=u(:,:,:,nnew) u_nnow=u(:,:,:,nnow) &
!$ser& v=v(:,:,:,nnew) v_nnow=v(:,:,:,nnow) &
!$ser& w=w(:,:,:,nnew) w_nnow=w(:,:,:,nnow) &
!$ser& rho=rho(:,:,:)
!$ser tracer %all@nnow
CALL advection_pd(u_half(:,:,:), v_half(:,:,:), w_half(:,:,:), nnow, dt, &
 im, ip, j2dim, ny_2dim)
!$ser savepoint AdvectionPDBottUnittest.DoTracers-out LargeTimeStep=ntstep
!$ser data rho=rho
!$ser tracer %all@nnew

Metainformation

Pascal Spörri C2SM 38

Conventions
• The name determines the unit test and the function

• AdvectionPDBottUnittest — The unit test

• DoTracers — The function

• The -in and -out postfix determines unit test in/output

• The meta information stores the current iteration

Pascal Spörri C2SM 39

C++ Dycore unit tests
TEST_F(AdvectionPDBottUnittest, DoTracers)
{

 for(int i = 0; i < iterations; ++i)
 {

 }
}

Specify input data

Specify reference data

Call Advection PD

Verify Result

Pascal Spörri C2SM 40

Direct error visualization

Most likely a problem with the
boundary conditions

Pascal Spörri C2SM 41

Status
• Support for COSMO fields

• Floating point precision agnostic

• Fortran module support: Work in progress

• Unit tests: Work in progress

• Documentation: Planned

Pascal Spörri C2SM 42

Questions?
Git:

https://wiki.c2sm.ethz.ch/C2SM/Git

Serialbox:
https://github.com/C2SM-RCM/serialbox

Source: xkcd.com/1597

https://wiki.c2sm.ethz.ch/C2SM/Git
https://github.com/C2SM-RCM/serialbox
http://xkcd.com/1597

